Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012 (2012), Article ID 283560, 10 pages
Research Article

Expression Profiling of a Heterogeneous Population of ncRNAs Employing a Mixed DNA/LNA Microarray

1Section for Genomics and RNomics, Biocenter, Innsbruck Medical University, Fritz Pregl Strasse 3, 6020 Innsbruck, Austria
2Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
3Université de Lorraine, CNRS-UMR 7214 AREMS, 9 avenue de la Forêt de Haye, F-54506 Vandoeuvre-lès-Nancy, France

Received 30 November 2011; Revised 6 March 2012; Accepted 6 March 2012

Academic Editor: Ashis K. Basu

Copyright © 2012 Konstantinia Skreka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Mammalian transcriptomes mainly consist of non protein coding RNAs. These ncRNAs play various roles in all cells and are involved in multiple regulation pathways. More recently, ncRNAs have also been described as valuable diagnostic tools. While RNA-seq approaches progressively replace microarray-based technologies for high-throughput expression profiling, they are still not routinely used in diagnostic. Microarrays, on the other hand, are more widely used for diagnostic profiling, especially for very small ncRNA (e.g., miRNAs), employing locked nucleic acid (LNA) arrays. However, LNA microarrays are quite expensive for high-throughput studies targeting longer ncRNAs, while DNA arrays do not provide satisfying results for the analysis of small RNAs. Here, we describe a mixed DNA/LNA microarray platform, where directly labeled small and longer ncRNAs are hybridized on LNA probes or custom DNA probes, respectively, enabling sensitive and specific analysis of a complex RNA population on a unique array in one single experiment. The DNA/LNA system, requiring relatively low amounts of total RNA, which complies with diagnostic references, was successfully applied to the analysis of differential ncRNA expression in mouse embryonic stem cells and adult brain cells.