Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012, Article ID 518162, 8 pages
http://dx.doi.org/10.1155/2012/518162
Review Article

Recent Advances in Chemical Modification of Peptide Nucleic Acids

Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, NY 13902, USA

Received 2 June 2012; Revised 12 July 2012; Accepted 20 July 2012

Academic Editor: Masayasu Kuwahara

Copyright © 2012 Eriks Rozners. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, “Sequence-selective recognition of DNA by strand displacement with thymine-substituted polyamide,” Science, vol. 254, no. 5037, pp. 1497–1500, 1991. View at Google Scholar · View at Scopus
  2. M. Egholm, O. Buchardt, L. Christensen et al., “PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules,” Nature, vol. 365, no. 6446, pp. 566–568, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. P. E. Nielsen, “Peptide Nucleic Acids (PNA) in chemical biology and drug discovery,” Chemistry and Biodiversity, vol. 7, no. 4, pp. 786–804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. E. Nielsen, “Sequence-selective targeting of duplex DNA by peptide nucleic acids,” Current Opinion in Molecular Therapeutics, vol. 12, no. 2, pp. 184–191, 2010. View at Google Scholar · View at Scopus
  5. C. Achim, B. A. Armitage, D. H. Ly, and J. W. Schneider, “Peptide nucleic acids (PNAs),” Wiley Encyclopedia of Chemical Biology, vol. 3, pp. 588–597, 2009. View at Google Scholar
  6. P. E. Nielsen, “Addressing the challenges of cellular delivery and bioavailability of peptide nucleic acids (PNA),” Quarterly Reviews of Biophysics, vol. 38, no. 4, pp. 345–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Shiraishi and P. E. Nielsen, “Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption,” Nature Protocols, vol. 1, no. 2, pp. 633–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. S. Hassane, A. F. Saleh, R. Abes, M. J. Gait, and B. Lebleu, “Cell penetrating peptides: overview and applications to the delivery of oligonucleotides,” Cellular and Molecular Life Sciences, vol. 67, no. 5, pp. 715–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Corradini, S. Sforza, T. Tedeschi, F. Totsingan, A. Manicardi, and R. Marchelli, “Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges,” Current Topics in Medicinal Chemistry, vol. 11, no. 12, pp. 1535–1554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Corradini, S. Sforza, T. Tedeschi, F. Totsingan, and R. Marchelli, “Peptide nucleic acids with a structurally biased backbone: effects of conformational constraints and stereochemistry,” Current Topics in Medicinal Chemistry, vol. 7, no. 7, pp. 681–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Wojciechowski and R. H. E. Hudson, “Nucleobase modifications in peptide nucleic acids,” Current Topics in Medicinal Chemistry, vol. 7, no. 7, pp. 667–679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Braasch and D. R. Corey, “Lipid-mediated introduction of peptide nucleic acids into cells.,” Methods in Molecular Biology, vol. 208, pp. 211–223, 2002. View at Google Scholar · View at Scopus
  13. H. Fang, K. Zhang, G. Shen, K. L. Wooley, and J. S. A. Taylor, “Cationic shell-cross-linked knedel-Like (cSCK) nanoparticles for highly efficient PNA delivery,” Molecular Pharmaceutics, vol. 6, no. 2, pp. 615–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Wang, K. Zhang, K. L. Wooley, and J. S. Taylor, “Imaging mRNA expression in live cells via peptide nucleic acid (PNA) strand-displacement activated probes,” Journal of Nucleic Acids, vol. 12, Article ID 962652, 2012. View at Publisher · View at Google Scholar
  15. S. Abes, J. J. Turner, G. D. Ivanova et al., “Efficient splicing correction by PNA conjugation to an R6 -Penetratin delivery peptide,” Nucleic Acids Research, vol. 35, no. 13, pp. 4495–4502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hu, M. Matsui, K. T. Gagnon et al., “Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs,” Nature Biotechnology, vol. 27, no. 5, pp. 478–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Hu and D. R. Corey, “Inhibiting gene expression with peptide nucleic acid (PNA)-peptide conjugates that target chromosomal DNA,” Biochemistry, vol. 46, no. 25, pp. 7581–7589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Fabani and M. J. Gait, “miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates,” RNA, vol. 14, no. 2, pp. 336–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Turner, G. D. Ivanova, B. Verbeure et al., “Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells,” Nucleic Acids Research, vol. 33, no. 21, pp. 6837–6849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. V. Wancewicz, M. A. Maier, A. M. Siwkowski et al., “Peptide nucleic acids conjugated to short basic peptides show improved pharmacokinetics and antisense activity in adipose tissue,” Journal of Medicinal Chemistry, vol. 53, no. 10, pp. 3919–3926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Fabani, C. Abreu-Goodger, D. Williams et al., “Efficient inhibition of miR-155 function in vivo by peptide nucleic acids,” Nucleic Acids Research, vol. 38, no. 13, Article ID gkq160, pp. 4466–4475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. G. Torres, M. M. Fabani, E. Vigorito et al., “Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs,” Nucleic Acids Research, vol. 40, no. 5, pp. 2152–2167, 2012. View at Publisher · View at Google Scholar
  23. E. Fabbri, A. Manicardi, T. Tedeschi et al., “Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs),” ChemMedChem, vol. 6, no. 12, pp. 2192–2202, 2011. View at Publisher · View at Google Scholar
  24. U. Koppelhus, T. Shiraishi, V. Zachar, S. Pankratova, and P. E. Nielsen, “Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain,” Bioconjugate Chemistry, vol. 19, no. 8, pp. 1526–1534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. R. Berthold, T. Shiraishi, and P. E. Nielsen, “Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers,” Bioconjugate Chemistry, vol. 21, no. 10, pp. 1933–1938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Muratovska, R. N. Lightowlers, R. W. Taylor et al., “Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease,” Nucleic Acids Research, vol. 29, no. 9, pp. 1852–1863, 2001. View at Google Scholar · View at Scopus
  27. M. Mehiri, G. Upert, S. Tripathi et al., “An efficient biodelivery system for antisense polyamide nucleic acid (PNA),” Oligonucleotides, vol. 18, no. 3, pp. 245–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Upert, A. Di Giorgio, A. Upadhyay et al., “Inhibition of HIV replication by cyclic and hairpin PNAs targeting the HIV-1 TAR RNA loop,” Journal of Nucleic Acids, vol. 12, Article ID 591025, 2012. View at Publisher · View at Google Scholar
  29. T. Shiraishi and P. E. Nielsen, “Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (“Umbrella”) and cholesterol conjugates delivered by cationic lipids,” Bioconjugate Chemistry, vol. 23, no. 2, pp. 196–202, 2012. View at Publisher · View at Google Scholar
  30. E. A. Englund and D. H. Appella, “γ-substituted peptide nucleic acids constructed from L-lysine are a versatile scaffold for multifunctional display,” Angewandte Chemie, International Edition, vol. 46, no. 9, pp. 1414–1418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Zhou, M. Wang, L. Du, G. W. Fisher, A. Waggoner, and D. H. Ly, “Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA),” Journal of the American Chemical Society, vol. 125, no. 23, pp. 6878–6879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Sahu, V. Chenna, K. L. Lathrop et al., “Synthesis of conformationaly preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs),” Journal of Organic Chemistry, vol. 74, no. 4, pp. 1509–1516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Zhou, A. Dragulescu-Andrasi, B. Bhattacharya et al., “Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 18, pp. 4931–4935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Dragulescu-Andrasi, P. Zhou, G. He, and D. H. Ly, “Cell-permeable GPNA with appropriate backbone stereochemistry and spacing binds sequence-specifically to RNA,” Chemical Communications, no. 2, pp. 244–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Dragulescu-Andrasi, S. Rapireddy, G. He et al., “Cell-permeable peptide nucleic acid designed to bind to the 5′-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects,” Journal of the American Chemical Society, vol. 128, no. 50, pp. 16104–16112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Gupta, O. Muse, and E. Rozners, “Recognition of double stranded RNA by guanidine-modified peptide nucleic acids (GPNA),” Biochemistry, vol. 51, no. 1, pp. 63–73, 2012. View at Publisher · View at Google Scholar
  37. A. Manicardi, E. Fabbri, T. Tedeschi et al., “Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells,” ChemBioChem, vol. 13, no. 9, pp. 1327–1337, 2012. View at Publisher · View at Google Scholar
  38. R. Mitra and K. N. Ganesh, “PNAs grafted with (α/γ, R/S)-aminomethylene pendants: regio and stereo specific effects on DNA binding and improved cell uptake,” Chemical Communications, vol. 47, no. 4, pp. 1198–1200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Mitra and K. N. Ganesh, “Aminomethylene peptide nucleic acid (am-PNA): synthesis, regio-/stereospecific DNA binding, and differential cell uptake of (α/γ, R/S)am-PNA analogues,” Journal of Organic Chemistry, vol. 77, no. 13, pp. 5696–5704, 2012. View at Publisher · View at Google Scholar
  40. A. B. Eldrup, O. Dahl, and P. E. Nielsen, “A novel peptide nucleic acid monomer for recognition of thymine in triple-helix structures,” Journal of the American Chemical Society, vol. 119, no. 45, pp. 11116–11117, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Dragulescu-Andrasi, S. Rapireddy, B. M. Frezza, C. Gayathri, R. R. Gil, and D. H. Ly, “A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 10258–10267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Rapireddy, R. Bahal, and D. H. Ly, “Strand invasion of mixed-sequence, double-helical B-DNA by γ-peptide nucleic acids containing g-clamp nucleobases under physiological conditions,” Biochemistry, vol. 50, no. 19, pp. 3913–3918, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Sahu, I. Sacui, S. Rapireddy et al., “Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility,” Journal of Organic Chemistry, vol. 76, no. 14, pp. 5614–5627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Hansen, T. Bentin, and P. E. Nielsen, “High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers,” Nucleic Acids Research, vol. 37, no. 13, pp. 4498–4507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Li, T. Zengeya, and E. Rozners, “Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5,” Journal of the American Chemical Society, vol. 132, no. 25, pp. 8676–8681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Gupta, T. Zengeya, and E. Rozners, “Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA,” Chemical Communications, vol. 47, no. 39, pp. 11125–11127, 2011. View at Google Scholar
  47. K. Aupeix, R. Le Tinévez, and J. J. Toulmé, “Binding of oligopyrimidines to the RNA hairpin responsible for the ribosome gag-pol frameshift in HIV-1,” FEBS Letters, vol. 449, no. 2-3, pp. 169–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Prévot-Halter and C. J. Leumann, “Selective recognition of a C-G base-pair in the parallel DNA triple-helical binding motif,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 18, pp. 2657–2660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Buchini and C. J. Leumann, “Stable and selective recognition of three base pairs in the parallel triple-helical DNA binding motif,” Angewandte Chemie, International Edition, vol. 43, no. 30, pp. 3925–3928, 2004. View at Publisher · View at Google Scholar · View at Scopus