Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012 (2012), Article ID 591025, 9 pages
http://dx.doi.org/10.1155/2012/591025
Research Article

Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

1Institut de Chimie de Nice, UMR CNRS 7272, Université de Nice-Sophia Antipolis, 28 Avenue de Valrose, F06100 Nice, France
2Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA

Received 30 May 2012; Accepted 12 July 2012

Academic Editor: Eriks Rozners

Copyright © 2012 Gregory Upert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. Zhou, D. Chen, E. Pierstorff, and K. Luo, “Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages,” EMBO Journal, vol. 17, no. 13, pp. 3681–3691, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Richter, H. Cao, and T. M. Rana, “Specific HIV-1 TAR RNA loop sequence and functional groups are required for human cyclin T1-Tat-TAR ternary complex formation,” Biochemistry, vol. 41, no. 20, pp. 6391–6397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Richter, Y. H. Ping, and T. M. Rana, “TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7928–7933, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Yang, “Discoveries of Tat-TAR interaction inhibitors for HIV-1,” Current Drug Targets, vol. 5, no. 4, pp. 433–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. N. Richter and G. Palù, “Inhibitors of HIV-1 Tat-mediated transactivation,” Current Medicinal Chemistry, vol. 13, no. 11, pp. 1305–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Ducongé and J. J. Toulmé, “In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1,” RNA, vol. 5, no. 12, pp. 1605–1614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Ducongé, C. Di Primo, and J. J. Toulmé, “Is a closing “GA pair” a rule for stable loop-loop RNA complexes?” Journal of Biological Chemistry, vol. 275, no. 28, pp. 21287–21294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Van Melckebeke, M. Devany, C. Di Primo et al., “Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9210–9215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Beaurain, C. Di Primo, J. J. Toulmé, and M. Laguerre, “Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer,” Nucleic Acids Research, vol. 31, no. 14, pp. 4275–4284, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Darfeuille, S. Reigadas, J. B. Hansen, H. Orum, C. Di Primo, and J. J. Toulmé, “Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides,” Biochemistry, vol. 45, no. 39, pp. 12076–12082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Darfeuille, C. Cazenave, S. Gryaznov, F. Ducongé, C. Di Primo, and J. J. Toulmé, “RNA and N3′ → P5′ kissing aptamers targeted to the trans-activation responsive (TAR) RNA of the human immunodeficiency virus-1,” Nucleosides, Nucleotides and Nucleic Acids, vol. 20, no. 4–7, pp. 441–449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Darfeuille, A. Arzumanov, S. Gryaznov, M. J. Gait, C. Di Primo, and J. J. Toulmé, “Loop-loop interaction of HIV-1 TAR RNA with N3′ → P5′ deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9709–9714, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Darfeuille, A. Arzumanov, M. J. Gait, C. Di Primo, and J. J. Toulmé, “2′-O-methyl-RNA hairpins generate loop-loop complexes and selectively inhibit HIV-1 tat-mediated transcription,” Biochemistry, vol. 41, no. 40, pp. 12186–12192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Zapata, K. Bathany, J. M. Schmitter, and S. Moreau, “Metal-assisted hybridization of oligonucleotides, evaluation of circular 2′-O-Me RNA as ligands for the TAR RNA target,” European Journal of Organic Chemistry, no. 6, pp. 1022–1028, 2003. View at Google Scholar · View at Scopus
  15. G. Kolb, S. Reigadas, C. Boiziau et al., “Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA,” Biochemistry, vol. 44, no. 8, pp. 2926–2933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Darfeuille, J. B. Hansen, H. Orum, C. Di Primo, and J. J. Toulmé, “LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1,” Nucleic Acids Research, vol. 32, no. 10, pp. 3101–3107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Di Primo, I. Rudloff, S. Reigadas, A. A. Arzumanov, M. J. Gait, and J. J. Toulmé, “Systematic screening of LNA/2′-O-methyl chimeric derivatives of a TAR RNA aptamer,” FEBS Letters, vol. 581, no. 4, pp. 771–774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Lebars, T. Richard, C. Di Primo, and J. J. Toulmé, “LNA derivatives of a kissing aptamer targeted to the trans-activating responsive RNA element of HIV-1,” Blood Cells, Molecules, and Diseases, vol. 38, no. 3, pp. 204–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Lebars, T. Richard, C. Di primo, and J. J. Toulmé, “NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer,” Nucleic Acids Research, vol. 35, no. 18, pp. 6103–6114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. Toulmé, C. Di Primo, and S. Moreau, “Modulation of RNA function by oligonucleotides recognizing RNA structure,” Progress in Nucleic Acid Research and Molecular Biology, vol. 69, pp. 1–46, 2001. View at Google Scholar · View at Scopus
  21. J. J. Toulmé, F. Darfeuille, G. Kolb, S. Chabas, and C. Staedel, “Modulating viral gene expression by aptamers to RNA structures,” Biology of the Cell, vol. 95, no. 3-4, pp. 229–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Kolb, S. Reigadas, D. Castanotto et al., “Endogenous expression of an anti-TAR aptamer reduces HIV-1 replication,” RNA Biology, vol. 3, no. 4, pp. 150–156, 2006. View at Google Scholar · View at Scopus
  23. G. Upert, M. Mehiri, A. D. Giorgio, R. Condom, and N. Patino, “Solid-phase synthesis and thermal denaturation study of cyclic PNAs targeting the HIV-1 TAR RNA loop,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 21, pp. 6026–6030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. E. Nielsen, “Gene targeting and expression modulation by peptide nucleic acids (PNA),” Current Pharmaceutical Design, vol. 16, no. 28, pp. 3118–3123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. V. N. Pandey, A. Upadhyay, and B. Chaubey, “Prospects for antisense peptide nucleic acid (PNA) therapies for HIV,” Expert Opinion on Biological Therapy, vol. 9, no. 8, pp. 975–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Abes, A. A. Arzumanov, H. M. Moulton et al., “Cell-penetrating-peptide-based delivery of oligonucleotides: an overview,” Biochemical Society Transactions, vol. 35, no. 4, pp. 775–779, 2007. View at Google Scholar · View at Scopus
  27. Z. V. Zhilina, A. J. Ziemba, and S. W. Ebbinghaus, “Peptide nucleic acid conjugates: synthesis, properties and applications,” Current Topics in Medicinal Chemistry, vol. 5, no. 12, pp. 1119–1131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Muratovska, R. N. Lightowlers, R. W. Taylor et al., “Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease,” Nucleic Acids Research, vol. 29, no. 9, pp. 1852–1863, 2001. View at Google Scholar · View at Scopus
  29. A. Filipovska, M. R. Eccles, R. A. J. Smith, and M. P. Murphy, “Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation,” FEBS Letters, vol. 556, no. 1–3, pp. 180–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mehiri, G. Upert, S. Tripathi et al., “An efficient biodelivery system for antisense polyamide nucleic acid (PNA),” Oligonucleotides, vol. 18, no. 3, pp. 245–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Armitage, D. Ly, T. Koch, H. Frydenlund, H. Ørum, and G. B. Schuster, “Hairpin-forming peptide nucleic acid oligomers,” Biochemistry, vol. 37, no. 26, pp. 9417–9425, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Planelles, F. Bachelerie, J. B. M. Jowett et al., “Fate of the human immunodeficiency virus type 1 provirus in infected cells: a role for vpr,” Journal of Virology, vol. 69, no. 9, pp. 5883–5889, 1995. View at Google Scholar · View at Scopus
  33. E. Riguet, S. Tripathi, B. Chaubey, J. Désiré, V. N. Pandey, and J. L. Décout, “A peptide nucleic acid-neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication,” Journal of Medicinal Chemistry, vol. 47, no. 20, pp. 4806–4809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Kashanchi, R. Shibata, E. K. Ross, J. N. Brady, and M. A. Martin, “Second-site long terminal repeat (LTR) revertants of replication-defective human immunodeficiency virus: effects of revertant TATA box motifs on virus infectivity, LTR-directed expression, in vitro RNA synthesis, and binding of basal transcription factors TFIID and TFIIA,” Journal of Virology, vol. 68, no. 5, pp. 3298–3307, 1994. View at Google Scholar · View at Scopus
  35. T. C. Chou, “Relationships between inhibition constants and fractional inhibition in enzyme catalyzed reactions with different numbers of reactants, different reaction mechanisms, and different types and mechanisms of inhibition,” Molecular Pharmacology, vol. 10, no. 2, pp. 235–247, 1974. View at Google Scholar · View at Scopus
  36. T. C. Chou, “On the determination of availability of ligand binding sites in steady state systems,” Journal of Theoretical Biology, vol. 65, no. 2, pp. 345–356, 1977. View at Google Scholar · View at Scopus