Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012 (2012), Article ID 748913, 20 pages
http://dx.doi.org/10.1155/2012/748913
Review Article

Challenges and Opportunities for Small Molecule Aptamer Development

Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

Received 30 July 2012; Accepted 8 September 2012

Academic Editor: Masayasu Kuwahara

Copyright © 2012 Maureen McKeague and Maria C. DeRosa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Deigan and A. R. Ferré-D'Amaré, “Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1329–1338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Weigand and B. Suess, “Aptamers and riboswitches: perspectives in biotechnology,” Applied Microbiology and Biotechnology, vol. 85, no. 2, pp. 229–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990. View at Google Scholar · View at Scopus
  4. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, no. 6265, pp. 467–468, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Mascini, Aptamers in Bioanalysis, John Wiley & Sons, Hoboken, NJ, USA, 2009.
  7. M. McKeague, C. R. Bradley, A. De Girolamo, A. Visconti, J. David Miller, and M. C. DeRosa, “Screening and initial binding assessment of fumonisin B1 aptamers,” International Journal of Molecular Sciences, vol. 11, no. 12, pp. 4864–4881, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. D. Jayasena, “Aptamers: an emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628–1650, 1999. View at Google Scholar · View at Scopus
  9. S. M. Nimjee, C. P. Rusconi, and B. A. Sullenger, “Aptamers: an emerging class of therapeutics,” Annual Review of Medicine, vol. 56, pp. 555–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Jhaveri and A. Ellington, “In vitro selection of RNA aptamers to a small molecule target,” Current Protocols in Nucleic Acid Chemistry, Chapter 9, Unit 9.5, 2002. View at Google Scholar · View at Scopus
  11. V. Bardoczy and T. Meszaros, “Aptamer selection for macromolecular (Protein) and for small molecule targets,” in Proceedings of the Periodica Polytechnica Abstracts of PhD Conference, 2006.
  12. Z. Balogh, G. Lautner, V. Bardóczy, B. Komorowska, R. E. Gyurcsányi, and T. Mészáros, “Selection and versatile application of virus-specific aptamers,” FASEB Journal, vol. 24, no. 11, pp. 4187–4195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Sefah, D. Shangguan, X. Xiong, M. B. O'Donoghue, and W. Tan, “Development of DNA aptamers using Cell-SELEX,” Nature protocols, vol. 5, no. 6, pp. 1169–1185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Beaucage and M. H. Caruthers, “Deoxynucleoside phosphoramidites-A new class of key intermediates for deoxypolynucleotide synthesis,” Tetrahedron Letters, vol. 22, no. 20, pp. 1859–1862, 1981. View at Google Scholar · View at Scopus
  15. S. L. Beaucage and R. P. Iyer, “Advances in the synthesis of oligonucleotides by the phosphoramidite approach,” Tetrahedron, vol. 48, no. 12, pp. 2223–2311, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. A. D. Keefe, S. Pai, and A. Ellington, “Aptamers as therapeutics,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 537–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Beaucage and R. P. Iyer, “The synthesis of modified oligonucleotides by the phosporamidite approach and their applications,” Tetrahedron, vol. 49, no. 28, pp. 6123–6194, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Beaucage and R. P. Iyer, “The functionalization of oligonucleotides via phosphoramidite derivatives,” Tetrahedron, vol. 49, no. 10, pp. 1925–1963, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. B. T. S. Bui and K. Haupt, “Molecularly imprinted polymers: synthetic receptors in bioanalysis,” Analytical and Bioanalytical Chemistry, vol. 398, no. 6, pp. 2481–2492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. X. Xu, H. J. Gao, L. M. Zhang, X. Q. Chen, and X. G. Qiao, “The biomimetic immunoassay based on molecularly imprinted polymer: a comprehensive review of recent progress and future prospects,” Journal of Food Science, vol. 76, no. 2, pp. R69–R75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. R. Mills, R. L. Peterson, and S. Spiegelman, “An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule,” Proceedings of the National Academy of Sciences of the United States of America, vol. 58, no. 1, pp. 217–224, 1967. View at Google Scholar · View at Scopus
  22. R. Saffhill, H. Schneider-Bernloehr, L. E. Orgel, and S. Spiegelman, “In vitro selection of bacteriophage Qβ ribonucleic acid variants resistant to ethidium bromide,” Journal of Molecular Biology, vol. 51, no. 3, pp. 531–539, 1970. View at Google Scholar · View at Scopus
  23. D. S. Wilson and J. W. Szostak, “In vitro selection of functional nucleic acids,” Annual Review of Biochemistry, vol. 68, pp. 611–647, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Silverman and S. K, “Artificial functional nucleic acids: aptamers, ribozymes, and deoxyribozymes identified by in vitro selection,” Functional Nucleic Acids For Analytical Applications, vol. 1, pp. 47–108, 2009. View at Publisher · View at Google Scholar
  25. B. Vant-Hull, L. Gold, and D. A. Zichi, “Theoretical principles of in vitro selection using combinatorial nucleic acid libraries,” Current Protocols in Nucleic acid Chemistry, Chapter 9, Unit 9.1, 2000. View at Google Scholar
  26. J. A. Cruz-Aguado and G. Penner, “Determination of ochratoxin A with a DNA aptamer,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10456–10461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Svobodova, A. Pinto, P. Nadal, and C. K. OSullivan, “Comparison of different methods for generation of single-stranded DNA for SELEX processes,” Analytical and Bioanalytical Chemistry, vol. 404, no. 3, pp. 835–842, 2012. View at Publisher · View at Google Scholar
  28. L. Gold, D. Ayers, J. Bertino et al., “Aptamer-based multiplexed proteomic technology for biomarker discovery,” PLoS One, vol. 5, no. 12, Article ID 15004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomolecular Engineering, vol. 24, no. 4, pp. 381–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. H. Davis and J. W. Szostak, “Isolation of high-affinity GTP aptamers from partially structured RNA libraries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11616–11621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Luo, M. Mckeague, S. Pitre et al., “Computational approaches toward the design of pools for the in vitro selection of complex aptamers,” RNA, vol. 16, no. 11, pp. 2252–2262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Ruff, T. M. Snyder, and D. R. Liu, “Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure,” Journal of the American Chemical Society, vol. 132, no. 27, pp. 9453–9464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. N. Win, J. S. Klein, and C. D. Smolke, “Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay,” Nucleic Acids Research, vol. 34, no. 19, pp. 5670–5682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. C. Cox, P. Rudolph, and A. D. Ellington, “Automated RNA selection,” Biotechnology Progress, vol. 14, no. 6, pp. 845–850, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. P. W. Goertz, J. C. Cox, and A. D. Ellington, “Automated selection of aminoglycoside aptamers,” Journal of the Association for Laboratory Automation, vol. 9, no. 3, pp. 150–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Wochner, B. Cech, M. Menger, V. A. Erdmann, and J. Glökler, “Semi-automated selection of DNA aptamers using magnetic particle handling,” BioTechniques, vol. 43, no. 3, pp. 344–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Cho and R. Juliano, “Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations,” Trends in Biotechnology, vol. 14, no. 5, pp. 153–158, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. M. L. Ashour and M. Wink, “Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action,” Journal of Pharmacy and Pharmacology, vol. 63, no. 3, pp. 305–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Roemer, J. Davies, G. Giaever, and C. Nislow, “Bugs, drugs and chemical genomics,” Nature Chemical Biology, vol. 8, no. 1, pp. 46–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. T. A. Walsh, “The emerging field of chemical genetics: potential applications for pesticide discovery,” Pest Management Science, vol. 63, no. 12, pp. 1165–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Cruz-Toledo, M. McKeague, X. Zhang et al., “Aptamer base: a collaborative knowledge base to describe aptamers and SELEX experiments,” Database, vol. 2012, Article ID bas006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Mascini, I. Palchetti, and S. Tombelli, “Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects,” Angewandte Chemie, vol. 51, pp. 1316–1332, 2012. View at Publisher · View at Google Scholar
  43. F. Michael, “Oligonucleotide aptamers that recognize small molecules,” Current Opinion in Structural Biology, vol. 9, pp. 324–329, 1999. View at Publisher · View at Google Scholar
  44. R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, “High-resolution molecular discrimination by RNA,” Science, vol. 263, no. 5152, pp. 1425–1429, 1994. View at Google Scholar · View at Scopus
  45. M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset, and E. Peyrin, “A DNA aptamer as a new target-specific chiral selector for HPLC,” Journal of the American Chemical Society, vol. 125, no. 28, pp. 8672–8679, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Famulok and J. W. Szostak, “Stereospecific recognition of tryptophan agarose by in vitro selected RNA,” Journal of the American Chemical Society, vol. 114, pp. 3990–3991, 1992. View at Google Scholar
  47. M. Famulok, “Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder,” Journal of the American Chemical Society, vol. 116, no. 5, pp. 1698–1706, 1994. View at Google Scholar · View at Scopus
  48. A. Geiger, P. Burgstaller, H. Von der Eltz, A. Roeder, and M. Famulok, “RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity,” Nucleic Acids Research, vol. 24, no. 6, pp. 1029–1036, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Shoji, M. Kuwahara, H. Ozaki, and H. Sawai, “Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity,” Journal of the American Chemical Society, vol. 129, no. 5, pp. 1456–1464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. S. Kim, C. J. Hyun, I. A. Kim, and M. B. Gu, “Isolation and characterization of enantioselective DNA aptamers for ibuprofen,” Bioorganic and Medicinal Chemistry, vol. 18, no. 10, pp. 3467–3473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. M. Carothers, J. A. Goler, Y. Kapoor, L. Lara, and J. D. Keasling, “Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity,” Nucleic Acids Research, vol. 38, no. 8, Article ID gkq082, pp. 2736–2747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Pfeffer and H. Gohlke, “DrugScoreRNA—knowledge-based scoring function to predict RNA—Ligand interactions,” Journal of Chemical Information and Modeling, vol. 47, no. 5, pp. 1868–1876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Jo, J. Y. Ahn, J. Lee et al., “Development of single-stranded DNA aptamers for specific bisphenol a detection,” Oligonucleotides, vol. 21, no. 2, pp. 85–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. H. Niazi, S. J. Lee, Y. S. Kim, and M. B. Gu, Bioorg. Med. Chem, vol. 16, pp. 1254–1261, 2008.
  55. M. Mandal, B. Boese, J. E. Barrick, W. C. Winkler, and R. R. Breaker, “Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria,” Cell, vol. 113, no. 5, pp. 577–586, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Welz and R. R. Breaker, “Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis,” RNA, vol. 13, no. 4, pp. 573–582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kwon and S. A. Strobel, “Chemical basis of glycine riboswitch cooperativity,” RNA, vol. 14, no. 1, pp. 25–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Missailidis and A. Hardy, “Aptamers as inhibitors of target proteins,” Expert Opinion on Therapeutic Patents, vol. 19, no. 8, pp. 1073–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Mayer, M. S. L. Ahmed, A. Dolf, E. Endl, P. A. Knolle, and M. Famulok, “Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures,” Nature Protocols, vol. 5, no. 12, pp. 1993–2004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Schneider, R. Vanderslice, and L. Gold, “Flow cell SELEX,” US Patent 5,861,254, 1999.
  61. C. Wilson and J. W. Szostak, “Isolation of a fluorophore-specific DNA aptamer with weak redox activity,” Chemistry and Biology, vol. 5, no. 11, pp. 609–617, 1998. View at Google Scholar · View at Scopus
  62. C. Yao, Y. Qi, Y. Zhao, Y. Xiang, Q. Chen, and W. Fu, “Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE,” Biosensors and Bioelectronics, vol. 24, no. 8, pp. 2499–2503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. J. White, A. A. Rowe, and K. W. Plaxco, “Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors,” Analyst, vol. 135, no. 3, pp. 589–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Hu and C. Easley, “A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis,” Analyst, vol. 136, no. 17, pp. 3461–3468, 2011. View at Publisher · View at Google Scholar
  65. T. H. Nguyen, L. J. Steinbock, H. J. Butt, M. Helm, and R. Berger, “Measuring single small molecule binding via rupture forces of a split aptamer,” Journal of the American Chemical Society, vol. 133, no. 7, pp. 2025–2027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. P. S. Lau and Y. Li, “Functional nucleic acids as molecular recognition elements for small organic and biological molecules,” Current Organic Chemistr, vol. 15, no. 4, pp. 557–575, 2011. View at Publisher · View at Google Scholar
  67. A. K. H. Cheng, D. Sen, and H. Z. Yu, “Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules,” Bioelectrochemistry, vol. 77, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. R. E. Wang, Y. Zhang, J. Cai, W. Cai, and T. Gao, “Aptamer-based fluorescent biosensors,” Current Medicinal Chemistry, vol. 18, pp. 4175–4184, 2011. View at Publisher · View at Google Scholar
  69. E. J. Cho, J. W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annual Review of Analytical Chemistry, pp. 241–264, 2009. View at Publisher · View at Google Scholar
  70. M. McKeague, A. Giamberardino, and M. C. DeRosa, “Advances in aptamer-based biosensors for food safety,” in Environmental Biosensors, V. Somerset, Ed., pp. 17–42, InTech, 2011. View at Google Scholar
  71. R. Nutiu and Y. Li, “Structure-switching signaling aptamers,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4771–4778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. P. S. Lau, B. K. Coombes, and Y. Li, “A General approach to the construction of structure-switching reporters from RNA aptamers,” Angewandte Chemie International, vol. 49, pp. 7938–7942, 2010. View at Publisher · View at Google Scholar
  73. C. Carrasquilla, P. S. Lau, Y. Li, and J. D. Brennan, “Stabilizing structure-switching signaling RNA aptamers by entrapment in sol-gel derived materials for solid-phase assay,” Journal of the American Chemical Society, vol. 134, pp. 10998–11005, 2012. View at Publisher · View at Google Scholar
  74. D. Zheng, R. Zou, and X. Lou, “free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease,” Analytical Chemistry, vol. 84, pp. 3554–3560, 2012. View at Publisher · View at Google Scholar
  75. J. Liang, Z. Chen, L. Guo, and L. Li, “Electrochemical sensing of L-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites,” Chemical Communications, vol. 47, pp. 5476–5478, 2011. View at Publisher · View at Google Scholar
  76. J. Chen, Z. Fang, J. Liu, and L. Zeng, “A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer,” Food Control, vol. 25, pp. 555–560, 2012. View at Publisher · View at Google Scholar
  77. X. Hun and Z. Wang, “L-Argininamide biosensor based on S1 nuclease hydrolysis signal amplification,” Microchimica Acta, vol. 176, pp. 209–216, 2012. View at Publisher · View at Google Scholar
  78. Z. Zhu, T. Schmidt, M. Mahrous et al., “Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing,” Analytica Chimica Acta, vol. 707, pp. 191–196, 2011. View at Publisher · View at Google Scholar
  79. R. Nutiu and Y. Li, “In vitro selection of structure-switching signaling aptamers,” Angewandte Chemie, vol. 44, pp. 1061–1065, 2005. View at Publisher · View at Google Scholar
  80. E. L. Null and Y. Lu, “Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers,” Analyst, vol. 135, no. 2, pp. 419–422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Famulok, J. S. Hartig, and G. Mayer, “Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy,” Chemical Reviews, vol. 107, no. 9, pp. 3715–3743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. J. L. Vinkenborg, N. Karnowski, and M. Famulok, “Aptamers for allosteric regulation,” Nature Chemical Biology, vol. 7, no. 8, pp. 519–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. M. N. Win, J. C. Liang, and C. D. Smolke, “Frameworks for Programming Biological Function through RNA Parts and Devices,” Chemistry and Biology, vol. 16, no. 3, pp. 298–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Tang and R. R. Breaker, “Rational design of allosteric ribozymes,” Chemistry and Biology, vol. 4, no. 6, pp. 453–459, 1997. View at Google Scholar · View at Scopus
  85. M. N. Stojanovic and D. M. Kolpashchikov, “Modular aptameric sensors,” Journal of the American Chemical Society, vol. 126, no. 30, pp. 9266–9270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Famulok, M. Blind, and G. Mayer, “Intramers as promising new tools in functional proteomics,” Chemistry and Biology, vol. 8, no. 10, pp. 931–939, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. J. C. Niles and M. A. Marletta, “Utilizing RNA aptamers to probe a physiologically important heme-regulated cellular network,” ACS Chemical Biology, vol. 1, no. 8, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Li, C. R. Geyer, and D. Sen, “Recognition of anionic porphyrins by DNA aptamers,” Biochemistry, vol. 35, no. 21, pp. 6911–6922, 1996. View at Publisher · View at Google Scholar · View at Scopus
  89. J. C. Niles, J. L. DeRisi, and M. A. Marletta, “Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13266–13271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. R. Holahan, D. Madularu, E. M. McConnell, R. Walsh, and M. C. DeRosa, “Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia,” PLoS One, vol. 6, no. 7, Article ID e22239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Penner, IVD Technology, 2012.
  92. A. De Girolamo, M. McKeague, J. D. Miller, M. C. DeRosa, and A. Visconti, “Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column,” Food Chemistry, vol. 127, no. 3, pp. 1378–1384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. A. De Girolamo, L. Le, G. Penner, R. Schena, and A. Visconti, “Analytical performances of a DNA-ligand system using time-resolved fluorescence for the determination of ochratoxin A in wheat,” Analytical and Bioanalytical Chemistry, vol. 403, pp. 2627–2634, 2012. View at Publisher · View at Google Scholar
  94. C. Yang, V. Lates, B. Prieto-Simón, J. Marty, and X. Yang, “Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A,” Biosensors and Bioelectronics, vol. 32, pp. 208–212, 2012. View at Publisher · View at Google Scholar
  95. L. Bonel, J. C. Vidal, P. Duato, and J. R. Castillo, “An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer,” Biosensors and Bioelectronics, vol. 26, no. 7, pp. 3254–3259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. Guo, J. Ren, J. Wang, and E. Wang, “Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A,” Talanta, vol. 85, no. 5, pp. 2517–2521, 2011. View at Publisher · View at Google Scholar
  97. L. Wang, W. Ma, W. Chen et al., “An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection,” Biosensors and Bioelectronics, vol. 26, no. 6, pp. 3059–3062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Kuang, W. Chen, D. Xu et al., “Fabricated aptamer-based electrochemical ‘signal-off’ sensor of ochratoxin A,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 710–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Miyachi, N. Shimizu, C. Ogino, and A. Kondo, “Selection of DNA aptamers using atomic force microscopy,” Nucleic Acids Research, vol. 38, no. 4, article e21, 2010. View at Google Scholar · View at Scopus
  100. D. Smith, G. P. Kirschenheuter, J. Charlton, D. M. Guidot, and J. E. Repine, “In vitro selection of RNA-based irreversible inhibitors of human neutrophil elastase,” Chemistry and Biology, vol. 2, no. 11, pp. 741–750, 1995. View at Google Scholar · View at Scopus
  101. Y. Kim, C. Liu, and W. Tan, “Aptamers generated by Cell SELEX for biomarker discovery,” Biomarkers in Medicine, vol. 3, no. 2, pp. 193–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. D. Mendonsa and M. T. Bowser, “In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis,” Analytical Chemistry, vol. 76, no. 18, pp. 5387–5392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. D. H. Burke and J. H. Willis, “Recombination, RNA evolution, and bifunctional RNA molecules isolated through chimeric SELEX,” RNA, vol. 4, no. 9, pp. 1165–1175, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. J. D. Smith and L. Gold, “Conditional-selex,” US Patent 6706482, 2004.
  105. K. B. Jensen, B. L. Atkinson, M. C. Willis, T. H. Koch, and L. Gold, “Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 26, pp. 12220–12224, 1995. View at Publisher · View at Google Scholar · View at Scopus
  106. K. N. Morris, K. B. Jensen, C. M. Julin, M. Weil, and L. Gold, “High affinity ligands from in vitro selection: complex targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 2902–2907, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Y. L. Tsai and R. R. Reed, “Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6447–6456, 1998. View at Google Scholar · View at Scopus
  108. R. E. Martell, J. R. Nevins, and B. A. Sullenger, “Optimizing aptamer activity for gene therapy applications using expression cassette SELEX,” Molecular Therapy, vol. 6, no. 1, pp. 30–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Stoltenburg, C. Reinemann, and B. Strehlitz, “FluMag-SELEX as an advantageous method for DNA aptamer selection,” Analytical and Bioanalytical Chemistry, vol. 383, no. 1, pp. 83–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Dobbelstein and T. Shenk, “In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries,” Journal of Virology, vol. 69, no. 12, pp. 8027–8034, 1995. View at Google Scholar · View at Scopus
  111. L. R. Coulter, M. A. Landree, and T. A. Cooper, “Identification of a new class of exonic splicing enhancers by in vivo selection,” Molecular and Cellular Biology, vol. 17, no. 4, pp. 2143–2150, 1997. View at Google Scholar · View at Scopus
  112. J. Kawakami, H. Imanaka, Y. Yokota, and N. Sugimoto, “In vitro selection of aptamers that act with Zn2+,” Journal of Inorganic Biochemistry, vol. 82, no. 1–4, pp. 197–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. A. D. Keefe and S. T. Cload, “SELEX with modified nucleotides,” Current Opinion in Chemical Biology, vol. 12, no. 4, pp. 448–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. Q. Gong, J. Wang, K. M. Ahmad et al., “Selection strategy to generate aptamer pairs that bind to distinct sites on protein targets,” Analytical Chemistry, vol. 84, no. 12, pp. 5365–5371, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX),” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1761–1766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Lou, J. Qian, Y. Xiao et al., “Micromagnetic selection of aptamers in microfluidic channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 2989–2994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Nitsche, A. Kurth, A. Dunkhorst et al., “One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX,” BMC Biotechnology, vol. 7, article no. 48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Jolma, T. Kivioja, J. Toivonen et al., “Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities,” Genome Research, vol. 20, no. 6, pp. 861–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Wu and J. F. Curran, “An allosteric synthetic DNA,” Nucleic Acids Research, vol. 27, no. 6, pp. 1512–1516, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. D. C. Reid, B. L. Chang, S. I. Gunderson, L. Alpert, W. A. Thompson, and W. G. Fairbrother, “Next-generation SELEX identifies sequence and structural determinants of splicing factor binding in human pre-mRNA sequence,” RNA, vol. 15, no. 12, pp. 2385–2397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Berezovski, M. Musheev, A. Drabovich, and S. N. Krylov, “Non-SELEX selection of aptamers,” Journal of the American Chemical Society, vol. 128, no. 5, pp. 1410–1411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. E. N. Brody, M. C. Willis, J. D. Smith, S. Jayasena, D. Zichi, and L. Gold, “The use of aptamers in large arrays for molecular diagnostics,” Molecular Diagnosis, vol. 4, no. 4, pp. 381–388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. J. D. Wen and D. M. Gray, “Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX,” Nucleic acids research, vol. 32, no. 22, article e182, 2004. View at Google Scholar · View at Scopus
  124. E. Roulet, S. Busso, A. A. Camargo, A. J. G. Simpson, N. Mermod, and P. Bucher, “High-throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites,” Nature Biotechnology, vol. 20, no. 8, pp. 831–835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Klußmann, A. Nolte, R. Bald, V. A. Erdmann, and J. P. Fürste, “Mirror-image RNA that binds D-adenosine,” Nature Biotechnology, vol. 14, no. 9, pp. 1112–1115, 1996. View at Google Scholar
  126. A. Vater, F. Jarosch, K. Buchner, and S. Klussmann, “Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX,” Nucleic acids research, vol. 31, no. 21, article 130, 2003. View at Google Scholar · View at Scopus
  127. S. P. Ohuchi, T. Ohtsu, and Y. Nakamura, “Selection ofRNA aptamers againstrecombinant transforming growth factor-β type III receptor displayed oncell surface,” Biochimie, vol. 88, no. 7, pp. 897–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. R. White, C. Rusconi, E. Scardino et al., “Generation of species cross-reactive aptamers using “toggle” SELEX,” Molecular Therapy, vol. 4, no. 6, pp. 567–573, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. L. A. Cassiday and L. J. Maher III, “Yeast genetic selections to optimize RNA decoys for transcription factor NF-κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3930–3935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. A. D. Ellington and J. W. Szostak, “Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures,” Nature, vol. 355, no. 6363, pp. 850–852, 1992. View at Publisher · View at Google Scholar · View at Scopus
  131. D. E. Huizenga and J. W. Szostak, “A DNA aptamer that binds adenosine and ATP,” Biochemistry, vol. 34, no. 2, pp. 656–665, 1995. View at Google Scholar · View at Scopus
  132. K. Harada and A. D. Frankel, “Identification of two novel arginine binding DNAs,” EMBO Journal, vol. 14, no. 23, pp. 5798–5811, 1995. View at Google Scholar · View at Scopus
  133. Q. Yang, I. J. Goldstein, H.-Y. Mei, and D. R. Engelke, “DNA ligands that bind tightly and selectively to cellobiose,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5462–5467, 1998. View at Publisher · View at Google Scholar · View at Scopus
  134. S. M. Rink, J. C. Shen, and L. A. Loeb, “Creation of RNA molecules that recognize the oxidative lesion 7,8-dihydro-8-hydroxy-2′-deoxyguanosine (8-oxodG) in DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11619–11624, 1998. View at Google Scholar · View at Scopus
  135. T. Kato, T. Takemura, K. Yano, K. Ikebukuro, and I. Karube, “In vitro selection of DNA aptamers which bind to cholic acid,” Biochimica et Biophysica Acta. Gene Structure and Expression, vol. 1493, no. 1-2, pp. 12–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Okazawa, H. Maeda, E. Fukusaki, Y. Katakura, and A. Kobayashi, “In vitro selection of hematoporphyrin binding DNA aptamers,” Bioorganic and Medicinal Chemistry Letters, vol. 10, no. 23, pp. 2653–2656, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. E. Vianini, M. Palumbo, and B. Gatto, “In vitro selection of DNA aptamers that bind L-tyrosinamide,” Bioorganic and Medicinal Chemistry, vol. 9, no. 10, pp. 2543–2548, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. M. M. Masud, M. Kuwahara, H. Ozaki, and H. Sawai, “Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX,” Bioorganic and Medicinal Chemistry, vol. 12, no. 5, pp. 1111–1120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. D. Mann, C. Reinemann, R. Stoltenburg, and B. Strehlitz, “In vitro selection of DNA aptamers binding ethanolamine,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1928–1934, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Sando, A. Narita, and Y. Aoyama, “Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye,” ChemBioChem, vol. 8, no. 15, pp. 1795–1803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip,” Biosensors and Bioelectronics, vol. 22, no. 11, pp. 2525–2531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. G. Hayashi, M. Hagihara, C. Dohno, and K. Nakatani, “Photoregulation of a peptide-RNA interaction on a gold surface,” Journal of the American Chemical Society, vol. 129, no. 28, pp. 8678–8679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. J. H. Niazi, S. J. Lee, and M. B. Gu, “Single-stranded DNA aptamers specific for antibiotics tetracyclines,” Bioorganic and Medicinal Chemistry, vol. 16, no. 15, pp. 7245–7253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. K. Ohsawa, T. Kasamatsu, J. I. Nagashima et al., “Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid,” Analytical Sciences, vol. 24, no. 1, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Wochner, M. Menger, D. Orgel et al., “A DNA aptamer with high affinity and specificity for therapeutic anthracyclines,” Analytical Biochemistry, vol. 373, no. 1, pp. 34–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Walsh and M. C. DeRosa, “Retention of function in the DNA homolog of the RNA dopamine aptamer,” Biochemical and Biophysical Research Communications, vol. 388, no. 4, pp. 732–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Miyachi, N. Shimizu, C. Ogino, H. Fukuda, and A. Kondo, “Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 13, pp. 3619–3622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. C. B. Joeng, J. H. Niazi, S. J. Lee, and M. B. Gu, “ssDNA aptamers that recognize diclofenac and 2-anilinophenylacetic acid,” Bioorganic and Medicinal Chemistry, vol. 17, no. 15, pp. 5380–5387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. J. He, Y. Liu, M. Fan, and X. Liu, “Isolation and identification of the DNA aptamer target to acetamiprid,” Journal of Agricultural and Food Chemistry, vol. 59, no. 5, pp. 1582–1586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. K. M. Song, M. Cho, H. Jo et al., “Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer,” Analytical Biochemistry, vol. 415, no. 2, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Yang, T. Bing, H. Mei, C. Fang, Z. Cao, and D. Shangguan, “Characterization and application of a DNA aptamer binding to l-tryptophan,” Analyst, vol. 136, no. 3, pp. 577–585, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. L. Barthelmebs, J. Jonca, A. Hayat, B. Prieto-Simon, and J. L. Marty, “Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine,” Food Control, vol. 22, no. 5, pp. 737–743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Renaud De La Faverie, F. Hamon, C. Di Primo et al., “Nucleic acids targeted to drugs: SELEX against a quadruplex ligand,” Biochimie, vol. 93, no. 8, pp. 1357–1367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Wang, X. Liu, Q. Zhang et al., “Selection of DNA aptamers that bind to four organophosphorus pesticides,” Biotechnology Letters, vol. 34, no. 5, pp. 869–874, 2012. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Xu, H. Yuan, S. Chen, A. Xu, J. Wang, and L. Wu, “Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis,” Analytical Biochemistry, vol. 423, no. 2, pp. 195–201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Mehta, E. Rouah-Martin, B. Van Dorst et al., “Selection and characterization of PCB-binding DNA aptamers,” Analytical Chemistry, vol. 84, no. 3, pp. 1669–1676, 2012. View at Publisher · View at Google Scholar · View at Scopus
  157. K.-M. Song, E. Jeong, W. Jeon, M. Cho, and C. Ban, “Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods,” Analytical and Bioanalytical Chemistry, vol. 402, no. 6, pp. 2153–2161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. J. W. Szostak, “Enzymatic activity of the conserved core of a group I self- splicing intron,” Nature, vol. 322, no. 6074, pp. 83–86, 1986. View at Google Scholar · View at Scopus
  159. I. Majerfeld and M. Yarus, “An RNA pocket for an aliphatic hydrophobe,” Nature Structural Biology, vol. 1, no. 5, pp. 287–292, 1994. View at Google Scholar · View at Scopus
  160. J. R. Lorsch and J. W. Szostak, “In vitro selection of RNA aptamers specific for cyanocobalamin,” Biochemistry, vol. 33, no. 4, pp. 973–982, 1994. View at Google Scholar · View at Scopus
  161. P. Burgstaller and M. Famulok, “Isolation of RNA aptamers for biological cofactors by in vitro selection,” Angewandte Chemie, vol. 33, no. 10, pp. 1084–1087, 1994. View at Google Scholar · View at Scopus
  162. S. M. Lato, A. R. Boles, and A. D. Ellington, “In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution,” Chemistry and Biology, vol. 2, no. 5, pp. 291–303, 1995. View at Publisher · View at Google Scholar · View at Scopus
  163. M. G. Wallis, U. Von Ahsen, R. Schroeder, and M. Famulok, “A novel RNA motif for neomycin recognition,” Chemistry and Biology, vol. 2, no. 8, pp. 543–552, 1995. View at Publisher · View at Google Scholar · View at Scopus
  164. Y. Wang and R. R. Rando, “Specific binding of aminoglycoside antibiotics to RNA,” Chemistry and Biology, vol. 2, pp. 281–290, 1995. View at Publisher · View at Google Scholar
  165. C. T. Lauhon and J. W. Szostak, “RNA aptamers that bind flavin and nicotinamide redox cofactors,” Journal of the American Chemical Society, vol. 117, no. 4, pp. 1246–1257, 1995. View at Google Scholar · View at Scopus
  166. C. Wilson, J. Nix, and J. Szostak, “Functional requirements for specific ligand recognition by a biotin-binding rna pseudoknot,” Biochemistry, vol. 37, no. 41, pp. 14410–14419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Mannironi, A. Di Nardo, P. Fruscoloni, and G. P. Tocchini-Valentini, “In vitro selection of dopamine RNA ligands,” Biochemistry, vol. 36, no. 32, pp. 9726–9734, 1997. View at Publisher · View at Google Scholar · View at Scopus
  168. A. A. Haller and P. Sarnow, “In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8521–8526, 1997. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Welch, I. Majerfeld, and M. Yarus, “23S rRNA similarity from selection for peptidyl transferase mimicry,” Biochemistry, vol. 36, no. 22, pp. 6614–6623, 1997. View at Publisher · View at Google Scholar · View at Scopus
  170. D. H. Burke, D. C. Hoffman, A. Brown, M. Hansen, A. Pardi, and L. Gold, “RNA aptamers to the peptidyl transferase inhibitor chloramphenicol,” Chemistry and Biology, vol. 4, no. 11, pp. 833–843, 1997. View at Google Scholar · View at Scopus
  171. M. G. Wallis, B. Streicher, H. Wank et al., “In vitro selection of a viomycin-binding RNA pseudoknot,” Chemistry and Biology, vol. 4, no. 5, pp. 357–366, 1997. View at Google Scholar · View at Scopus
  172. L. A. Holeman, S. L. Robinson, J. W. Szostak, and C. Wilson, “Isolation and characterization of fluorophore-binding RNA aptamers,” Folding and Design, vol. 3, no. 6, pp. 423–431, 1998. View at Publisher · View at Google Scholar · View at Scopus
  173. S. T. Wallace and R. Schroede, “In vitro selection and characterization of streptomycin-binding RNAs: recognition discrimination between antibiotics,” RNA, vol. 4, no. 1, pp. 112–123, 1998. View at Google Scholar · View at Scopus
  174. I. Majerfeld and M. Yarus, “Isoleucine:RNA sites with associated coding sequences,” RNA, vol. 4, no. 4, pp. 471–478, 1998. View at Google Scholar · View at Scopus
  175. D. Kiga, Y. Futamura, K. Sakamoto, and S. Yokoyama, “An RNA aptamer to the xanthine/guanine base with a distinctive mode of purine recognition,” Nucleic Acids Research, vol. 26, no. 7, pp. 1755–1760, 1998. View at Publisher · View at Google Scholar · View at Scopus
  176. D. Grate and C. Wilson, “Laser-mediated, site-specific inactivation of RNA transcripts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6131–6136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. A. Khvorova, Y. G. Kwak, M. Tamkun, I. Majerfeld, and M. Yarus, “RNAs that bind and change the permeability of phospholipid membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10649–10654, 1999. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Koizumi and R. R. Breaker, “Molecular recognition of cAMP by an RNA aptamer,” Biochemistry, vol. 39, no. 30, pp. 8983–8992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Jhaveri, M. Rajendran, and A. D. Ellington, “In vitro selection of signaling aptamers,” Nature Biotechnology, vol. 18, no. 12, pp. 1293–1297, 2000. View at Publisher · View at Google Scholar · View at Scopus
  180. C. Mannironi, C. Scerch, P. Fruscoloni, and G. P. Tocchini-Valentini, “Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif,” RNA, vol. 6, no. 4, pp. 520–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. K. Gebhardt, A. Shokraei, E. Babaie, and B. H. Lindqvist, “RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency, and comparison with anti-S-adenosylhomocysteine antibody,” Biochemistry, vol. 39, no. 24, pp. 7255–7265, 2000. View at Publisher · View at Google Scholar · View at Scopus
  182. J. A. Cowan, T. Ohyama, D. Wang, and K. Natarajan, “Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions,” Nucleic Acids Research, vol. 28, no. 15, pp. 2935–2942, 2000. View at Google Scholar · View at Scopus
  183. H. Schürer, K. Stembera, D. Knoll et al., “Aptamers that bind to the antibiotic moenomycin A,” Bioorganic and Medicinal Chemistry, vol. 9, no. 10, pp. 2557–2563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  184. S. Jeong, T.-Y. Eom, S.-J. Kim, S.-W. Lee, and J. Yu, “In vitro selection of the RNA Aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion,” Biochemical and Biophysical Research Communications, vol. 281, no. 1, pp. 237–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  185. C. Berens, A. Thain, and R. Schroeder, “A tetracycline-binding RNA aptamer,” Bioorganic and Medicinal Chemistry, vol. 9, no. 10, pp. 2549–2556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  186. M. Kwon, S. M. Chun, S. Jeong, and J. Yu, “In vitro selection of RNA against kanamycin B,” Molecules and Cells, vol. 11, no. 3, pp. 303–311, 2001. View at Google Scholar · View at Scopus
  187. M. Meli, J. Vergne, J.-L. Décout, and M.-C. Maurel, “Adenine-aptamer complexes. A bipartite RNA site that binds the adenine nucleic base,” Journal of Biological Chemistry, vol. 277, no. 3, pp. 2104–2111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Roychowdhury-Saha, S. M. Lato, E. D. Shank, and D. H. Burke, “Flavin recognition by an RNA aptamer targeted toward FAD,” Biochemistry, vol. 41, no. 8, pp. 2492–2499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  189. C. Lozupone, S. Changayil, I. Majerfeld, and M. Yarus, “Selection of the simplest RNA that binds isoleucine,” RNA, vol. 9, no. 11, pp. 1315–1322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. N. K. Vaish, R. Larralde, A. W. Fraley, J. W. Szostak, and L. W. McLaughlin, “A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality,” Biochemistry, vol. 42, no. 29, pp. 8842–8851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. Z. Huang and J. W. Szostak, “Evolution of aptamers with a new specificity and new secondary structures from an ATP aptamer,” RNA, vol. 9, no. 12, pp. 1456–1463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. U. Brockstedt, A. Uzarowska, A. Montpetit, W. Pfau, and D. Labuda, “In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines,” Biochemical and Biophysical Research Communications, vol. 313, no. 4, pp. 1004–1008, 2004. View at Publisher · View at Google Scholar · View at Scopus
  193. P. L. Sazani, R. Larralde, and J. W. Szostak, “A small aptamer with strong and specific recognition of the triphosphate of ATP,” Journal of the American Chemical Society, vol. 126, no. 27, pp. 8370–8371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Legiewicz and M. Yarus, “A more complex isoleucine aptamer with a cognate triplet,” Journal of Biological Chemistry, vol. 280, no. 20, pp. 19815–19822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  195. I. Majerfeld, D. Puthenvedu, and M. Yarus, “RNA affinity for molecular L-histidine; genetic code origins,” Journal of Molecular Evolution, vol. 61, no. 2, pp. 226–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  196. D. Lévesque, J. D. Beaudoin, S. Roy, and J. P. Perreault, “In vitro selection and characterization of RNA aptamers binding thyroxine hormone,” Biochemical Journal, vol. 403, no. 1, pp. 129–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. D. P. Morse, “Direct selection of RNA beacon aptamers,” Biochemical and Biophysical Research Communications, vol. 359, no. 1, pp. 94–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. H. W. Lee, S. G. Robinson, S. Bandyopadhyay, R. H. Mitchell, and D. Sen, “Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector,” Journal of Molecular Biology, vol. 371, no. 5, pp. 1163–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. T. P. Constantin, G. L. Silva, K. L. Robertson et al., “Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules,” Organic Letters, vol. 10, no. 8, pp. 1561–1564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. K. Endo and Y. Nakamura, “A binary Cy3 aptamer probe composed of folded modules,” Analytical Biochemistry, vol. 400, pp. 103–109, 2010. View at Publisher · View at Google Scholar
  201. J. Lee, K. H. Lee, J. Jeon, A. Dragulescu-Andrasi, F. Xiao, and J. Rao, “Combining SELEX screening and rational design to develop light-up fluorophore-RNA aptamer pairs for RNA tagging,” ACS Chemical Biology, vol. 5, no. 11, pp. 1065–1074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  202. J. Sinha, S. J. Reyes, and J. P. Gallivan, “Reprogramming bacteria to seek and destroy an herbicide,” Nature Chemical Biology, vol. 6, no. 6, pp. 464–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. K. Horii, K. Omi, Y. Yoshida et al., “Development of a sphingosylphosphorylcholine detection system using RNA aptamers,” Molecules, vol. 15, no. 8, pp. 5742–5755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Murata, S. I. Sato, Y. Kawazoe, and M. Uesugi, “Small-molecule fluorescent probes for specific RNA targets,” Chemical Communications, vol. 47, no. 16, pp. 4712–4714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. J. S. Paige, K. Y. Wu, and S. R. Jaffrey, “RNA mimics of green fluorescent protein,” Science, vol. 333, no. 6042, pp. 642–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. J. Bala, A. Bhaskar, A. Varshney, A. K. Singh, S. Dey, and P. Yadava, “In vitro selected RNA aptamer recognizing glutathione induces ROS-mediated apoptosis in the human breast cancer cell line MCF 7,” RNA Biology, vol. 8, no. 1, pp. 101–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. J. L. Lau, M. M. Baksh, J. D. Fiedler et al., “Evolution and protein packaging of small-molecule RNA aptamers,” ACS Nano, vol. 5, pp. 7722–7729, 2011. View at Publisher · View at Google Scholar
  208. J. Flinders, S. C. DeFina, D. M. Brackett, C. Baugh, C. Wilson, and T. Dieckmann, “Recognition of planar and nonplanar ligands in the malachite green—RNA aptamer complex,” ChemBioChem, vol. 5, no. 1, pp. 62–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  209. J. A. Cruz-Aguado and G. Penner, “Fluorescence polarization based displacement assay for the determination of small molecules with aptamers,” Analytical Chemistry, vol. 80, no. 22, pp. 8853–8855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  210. A. Guedin, L. Lacroix, and J. L. Mergny, “Thermal melting studies of ligand DNA interactions,” Methods in Molecular Biology, vol. 613, pp. 25–35, 2010. View at Publisher · View at Google Scholar
  211. P. Lin, R. Chen, C. Lee, Y. Chang, C. Chen, and W. Chen, “Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry,” Colloids and Surfaces B, vol. 88, pp. 552–558, 2011. View at Publisher · View at Google Scholar
  212. J. H. Lee, M. D. Canny, A. De Erkenez et al., “A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 18902–18907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  213. Y. Sultan, R. Walsh, C. Monreal, and M. C. DeRosa, “Preparation of functional aptamer films using layer-by-layer self-assembly,” Biomacromolecules, vol. 10, no. 5, pp. 1149–1154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. Q. Deng, I. German, D. Buchanan, and R. T. Kennedy, “Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase,” Analytical Chemistry, vol. 73, no. 22, pp. 5415–5421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  215. A. P. Drabovich, M. Berezovski, V. Okhonin, and S. N. Krylov, “Selection of smart aptamers by methods of kinetic capillary electrophoresis,” Analytical Chemistry, vol. 78, no. 9, pp. 3171–3178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. J. Bao, S. M. Krylova, O. Reinstein, P. E. Johnson, and S. N. Krylov, “Label-free solution-based kinetic study of aptamer-small molecule interactions by kinetic capillary electrophoresis with UV detection revealing how kinetics control equilibrium,” Analytical Chemistry, vol. 83, pp. 8387–8390, 2011. View at Publisher · View at Google Scholar
  217. R. T. Turgeon, B. R. Fonslow, M. Jing, and M. T. Bowser, “Measuring aptamer equilibria using gradient micro free flow electrophoresis,” Analytical Chemistry, vol. 82, no. 9, pp. 3636–3641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. B. Hall, S. Arshad, K. Seo et al., “In vitro selection of RNA aptamers to a protein target by filter immobilization,” Current Protocols in Molecular Biology, no. 88, pp. 24.3.1–24.3.27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  219. C. Gaillard and F. Strauss, “DNA loops and semicatenated DNA junctions,” BMC Biochemistry, vol. 1, article no. 1, pp. 1–7, 2000. View at Publisher · View at Google Scholar · View at Scopus
  220. P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angewandte Chemie, vol. 49, no. 12, pp. 2238–2241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  221. A. S. R. Potty, K. Kourentzi, H. Fang et al., “Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor,” Biopolymers, vol. 91, no. 2, pp. 145–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. S. S. Oh, K. Plakos, X. Lou, Y. Xiao, and H. T. Soh, “In vitro selection of structure-switching, self-reporting aptamers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14053–14058, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. E. E. Regulski and R. R. Breaker, “In-line probing analysis of riboswitches,” Methods in Molecular Biology, vol. 419, pp. 53–67, 2008. View at Google Scholar · View at Scopus
  224. W. Yoshida, K. Sode, and K. Ikebukuro, “Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers,” Biochemical and Biophysical Research Communications, vol. 348, no. 1, pp. 245–252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  225. S. A. McManus and Y. Li, “Multiple occurrences of an efficient self-phosphorylating deoxyribozyme motif,” Biochemistry, vol. 46, no. 8, pp. 2198–2204, 2007. View at Publisher · View at Google Scholar · View at Scopus