Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012, Article ID 962652, 11 pages
http://dx.doi.org/10.1155/2012/962652
Research Article

Imaging mRNA Expression in Live Cells via PNA·DNA Strand Displacement-Activated Probes

1Department of Chemistry, Washington University, St. Louis, MO 63130, USA
2Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842-3012, USA

Received 16 June 2012; Accepted 30 July 2012

Academic Editor: Eriks Rozners

Copyright © 2012 Zhenghui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tyagi, “Imaging intracellular RNA distribution and dynamics in living cells,” Nature Methods, vol. 6, no. 5, pp. 331–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Bao, J. R. Won, and A. Tsourkas, “Fluorescent probes for live-cell RNA detection,” Annual Review of Biomedical Engineering, vol. 11, pp. 25–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. B. A. Armitage, “Imaging of RNA in live cells,” Current Opinion in Chemical Biology, vol. 15, no. 6, pp. 806–812, 2011. View at Publisher · View at Google Scholar
  4. A. K. Chen, M. A. Behlke, and A. Tsourkas, “Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA,” Nucleic Acids Research, vol. 36, no. 12, article e69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Santangelo, N. Nitin, and G. Bao, “Nanostructured probes for RNA detection in living cells,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 39–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Kolpashchikov, “Binary probes for nucleic acid analysis,” Chemical Reviews, vol. 110, no. 8, pp. 4709–4723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Li, X. Zhou, and D. Ye, “Molecular beacons: an optimal multifunctional biological probe,” Biochemical and Biophysical Research Communications, vol. 373, no. 4, pp. 457–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, “Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization,” PCR Methods and Applications, vol. 4, no. 6, pp. 357–362, 1995. View at Google Scholar · View at Scopus
  9. M. K. Johansson, H. Fidder, D. Dick, and R. M. Cook, “Intramolecular dimers: a new strategy to flourescence quenching in dual-labeled oligonucleotide probes,” Journal of the American Chemical Society, vol. 124, no. 24, pp. 6950–6956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Ellwood, M. Collins, E. F. Fritsch et al., “Strand displacement applied to assays with nucleic acid probes,” Clinical Chemistry, vol. 32, no. 9, pp. 1631–1636, 1986. View at Google Scholar · View at Scopus
  11. L. E. Morrison, T. C. Halder, and L. M. Stols, “Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization,” Analytical Biochemistry, vol. 183, no. 2, pp. 231–244, 1989. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Li, G. Luan, Q. Guo, and J. Liang, “A new class of homogeneous nucleic acid probes based on specific displacement hybridization,” Nucleic Acids Research, vol. 30, no. 2, p. E5, 2002. View at Google Scholar · View at Scopus
  13. D. Y. Zhang and E. Winfree, “Control of DNA strand displacement kinetics using toehold exchange,” Journal of the American Chemical Society, vol. 131, no. 47, pp. 17303–17314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. He, M. Rusckowski, Y. Wang et al., “Optical pretargeting of tumor with fluorescent MORF oligomers,” Molecular Imaging and Biology, vol. 9, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Liang, X. Liu, D. Cheng et al., “Optical antisense tumor targeting in vivo with an improved fluorescent DNA duplex probe,” Bioconjugate Chemistry, vol. 20, no. 6, pp. 1223–1227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, and C. A. Mirkin, “Nano-flares: probes for transfection and mRNA detection in living cells,” Journal of the American Chemical Society, vol. 129, no. 50, pp. 15477–15479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Shakeel, S. Karim, and A. Ali, “Peptide nucleic acid (PNA)—a review,” Journal of Chemical Technology and Biotechnology, vol. 81, no. 6, pp. 892–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. E. Nielsen, “Peptide Nucleic Acids (PNA) in chemical biology and drug discovery,” Chemistry and Biodiversity, vol. 7, no. 4, pp. 786–804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Fang, K. Zhang, G. Shen, K. L. Wooley, and J. S. A. Taylor, “Cationic shell-cross-linked knedel-Like (cSCK) nanoparticles for highly efficient PNA delivery,” Molecular Pharmaceutics, vol. 6, no. 2, pp. 615–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Zhang, H. Fang, G. Shen, J. S. A. Taylor, and K. L. Wooley, “Well-defined cationic shell crosslinked nanoparticles for efficient delivery of DNA or peptide nucleic acids,” Proceedings of the American Thoracic Society, vol. 6, no. 5, pp. 450–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Aktan, “iNOS-mediated nitric oxide production and its regulation,” Life Sciences, vol. 75, no. 6, pp. 639–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Pautz, J. Art, S. Hahn, S. Nowag, C. Voss, and H. Kleinert, “Regulation of the expression of inducible nitric oxide synthase,” Nitric Oxide, vol. 23, no. 2, pp. 75–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Fang, Y. Shen, and J. S. Taylor, “Native mRNA antisense-accessible sites library for the selection of antisense oligonucleotides, PNAs, and siRNAs,” RNA, vol. 16, no. 7, pp. 1429–1435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Zhang, H. Fang, Z. Wang, J. S. A. Taylor, and K. L. Wooley, “Cationic shell-crosslinked knedel-like nanoparticles for highly efficient gene and oligonucleotide transfection of mammalian cells,” Biomaterials, vol. 30, no. 5, pp. 968–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Fang, X. Yue, X. Li, and J. S. Taylor, “Identification and characterization of high affinity antisense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overexpressed in MCF-7 breast cancer cells,” Nucleic Acids Research, vol. 33, no. 21, pp. 6700–6711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Shrestha, Y. Shen, K. A. Pollack, J. S. Taylor, and K. L. Wooley, “Dual peptide nucleic acid- and peptide-functionalized shell cross-linked nanoparticles designed to target mRNA toward the diagnosis and treatment of acute lung injury,” Bioconjugate Chemistry, vol. 23, no. 3, pp. 574–585, 2012. View at Publisher · View at Google Scholar
  27. H. Kuhn, V. V. Demidov, B. D. Gildea, M. J. Fiandaca, J. C. Coull, and M. D. Frank-Kamenetskii, “PNA beacons for duplex DNA,” Antisense and Nucleic Acid Drug Development, vol. 11, no. 4, pp. 265–270, 2001. View at Google Scholar · View at Scopus
  28. I. A. Nazarenko, S. K. Bhatnagar, and R. J. Hohman, “A closed tube format for amplification and detection of DNA based on energy transfer,” Nucleic Acids Research, vol. 25, no. 12, pp. 2516–2521, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Nazarenko, R. Pires, B. Lowe, M. Obaidy, and A. Rashtchian, “Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes,” Nucleic Acids Research, vol. 30, no. 9, pp. 2089–2095, 2002. View at Google Scholar · View at Scopus
  30. M. R. Lewis and F. Jia, “Antisense imaging: and miles to go before we sleep?” Journal of Cellular Biochemistry, vol. 90, no. 3, pp. 464–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Noda and F. Amano, “Differences in nitric oxide synthase activity in a macrophage-like cell line, RAW264.7 cells, treated with lipopolysaccharide (LPS) in the presence or absence of interferon-γ (IFN-γ): possible heterogeneity of iNOS activity,” Journal of Biochemistry, vol. 121, no. 1, pp. 38–46, 1997. View at Google Scholar · View at Scopus
  32. C. Altmann, A. Andres-Hernando, R. H. McMahan et al., “Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury,” American Journal of Renal Physiology, vol. 302, no. 4, pp. F421–F432, 2012. View at Google Scholar
  33. H. W. Trask, R. Cowper-Sal-Lari, M. A. Sartor et al., “Microarray analysis of cytoplasmic versus whole cell RNA reveals a considerable number of missed and false positive mRNAs,” RNA, vol. 15, no. 10, pp. 1917–1928, 2009. View at Publisher · View at Google Scholar · View at Scopus