Table of Contents
Journal of Nuclear Chemistry
Volume 2013 (2013), Article ID 849732, 6 pages
http://dx.doi.org/10.1155/2013/849732
Research Article

Studies on the Rain Scavenging Process of Tritium in a Tropical Site at Narora in India

1Environmental Survey Laboratory, Environmental Studies Section, Health Physics Division, Bhabha Atomic Research Centre, Narora Atomic Power Station, Narora, Bulandshahr 202389, India
2Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Received 4 December 2012; Accepted 5 February 2013

Academic Editor: Karnam Ramakumar

Copyright © 2013 Y. P. Gautam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. G. Blaylock, F. O. Hoffman, and M. L. Frank, “Tritium in the aquatic environment,” Radiation Protection Dosimetry, vol. 16, no. 1-2, pp. 65–71, 1986. View at Google Scholar · View at Scopus
  2. C. Boyer, L. Vichot, M. Fromm et al., “Tritium in plants: a review of current knowledge,” Environmental and Experimental Botany, vol. 67, no. 1, pp. 34–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. De Bortoli and P. Gaglione, “Variability of wash out ratio for some fallout radionuclides, physical behaviour of radioactive contaminants in the atmosphere,” in Proceedings of the Symposium Jointly Organised by IAEA and World Meteorological Organization, pp. 167–180, Vienna, Austria, 1974.
  4. M. Velarde and M. Perlado, “Tritium gas and tritiated water vapour behaviour in the environment from releases into the atmosphere from fusion reactors,” Fusion Engineering and Design, vol. 58-59, pp. 1123–1126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Belot, “Predicting the wash out of tritiated water from the atmospheric plumes,” in Workshop of the IEA Task Group on Tritium Safety and Environmental Effects. AECL, Chalk River, Canada, 1998.
  6. V. Abrol, “Estimation of wash out of tritiated water (HTO) effluent by rain drops,” Bulletin of Radiation Protection, vol. 13, pp. 23–26, 1990. View at Google Scholar
  7. J. M. Hales, Scavenging of Gaseous Tritium Compounds by Rain. BNWL-1659, Battelle, Pacific Northwest Laboratories, Richland, Washington, DC, USA, 1972.
  8. J. M. Hales, “Fundamentals of the theory of gas scavenging by rain,” Atmospheric Environment, vol. 6, no. 9, pp. 635–659, 1972. View at Google Scholar · View at Scopus
  9. M. T. Dana, N. A. Wogman, and M. A. Wolf, “Rain scavenging of tritiated water (HTO): a field experiment and theoretical considerations,” Atmospheric Environment, vol. 12, no. 6-7, pp. 1523–1529, 1978. View at Google Scholar · View at Scopus
  10. L. F. Belovodski, V. K. Gaevoy, A. V. Golubev, and T. A. Kosheleva, “Tritium oxide wash-out by drops,” Journal of Environmental Radioactivity, vol. 36, no. 2-3, pp. 129–139, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. D. P. Nankar, A. K. Patra, P. M. Ravi, C. P. Joshi, A. G. Hegde, and P. K. Sarkar, “Studies on the rain scavenging process of tritium in a tropical site in India,” Journal of Environmental Radioactivity, vol. 104, pp. 7–13, 2011. View at Google Scholar
  12. T. K. Reji, P. M. Ravi, T. L. Ajith, B. N. Dileep, A. G. Hegde, and P. K. Sarkar, “Environmental transport of Tritium and estimation of site-specific model parametres for Kiaga site, India,” Radiation Protection Dosimetry, 2011. View at Google Scholar
  13. Y. P. Gautam, A. K. Sharma, S. Sharma et al., “Monitoring of atmospheric H around narora atomic power station,” Journal of Radioanalytical and Nuclear Chemistry, vol. 285, no. 3, pp. 425–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. E. Faw and J. K. Shultis, “Atmospheric dispersion of radionuclides,” in Radiological Assessment: Sources and Doses, p. 465, American Nuclear Society, La Grange Park, Ill, USA, 1999. View at Google Scholar
  15. N. Miljević, V. Šipka, A. Žujić, and D. Golobočanin, “Tritium around the vinca institute of nuclear sciences,” Journal of Environmental Radioactivity, vol. 48, no. 3, pp. 303–315, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Attanassov and D. Galeriu, “Rain scavenging of tritiated water vapour: a numerical Eulerian stationary model,” Journal of Environmental Radioactivity, vol. 102, no. 1, pp. 43–52, 2010. View at Publisher · View at Google Scholar
  17. K. J. Vogt, “Models for accessing the environmental exposure by tritium released from nuclear installations,” in Proceedings of the IAEA-SM-232/15, pp. 521–534, 1979.