Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013 (2013), Article ID 234572, 13 pages
http://dx.doi.org/10.1155/2013/234572
Review Article

Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model

Department of Biology, The University of Western Ontario, London, ON, Canada N6A 5B7

Received 31 December 2012; Accepted 2 April 2013

Academic Editor: Barbara Picconi

Copyright © 2013 Jordan T. Newington et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Attwell and S. B. Laughlin, “An energy budget for signaling in the grey matter of the brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 10, pp. 1133–1145, 2001. View at Publisher · View at Google Scholar
  2. G. A. Brooks, “Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals—the ‘lactate shuttle’,” in Circulation, Respiration, and Metabolism: Current Comparative Approaches, R. Gilles, Ed., p. 208, Springer, Berlin, Germany, 1985. View at Google Scholar
  3. Y. Itoh, T. Esaki, K. Shimoji et al., “Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4879–4884, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Bouzier-Sore, P. Voisin, V. Bouchaud, E. Bezancon, J. M. Franconi, and L. Pellerin, “Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study,” European Journal of Neuroscience, vol. 24, no. 6, pp. 1687–1694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Sokoloff, M. Reivich, C. Kennedy et al., “The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat,” Journal of Neurochemistry, vol. 28, no. 5, pp. 897–916, 1977. View at Google Scholar · View at Scopus
  6. P. T. Fox and M. E. Raichle, “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 4, pp. 1140–1144, 1986. View at Google Scholar · View at Scopus
  7. P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence, “Nonoxidative glucose consumption during focal physiologic neural activity,” Science, vol. 241, no. 4864, pp. 462–464, 1988. View at Google Scholar · View at Scopus
  8. S. N. Vaishnavi, A. G. Vlassenko, M. M. Rundle, A. Z. Snyder, M. A. Mintun, and M. E. Raichle, “Regional aerobic glycolysis in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17757–17762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Urrila, A. Hakkarainen, S. Heikkinen et al., “Stimulus-induced brain lactate: effects of aging and prolonged wakefulness,” Journal of Sleep Research, vol. 13, no. 2, pp. 111–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Lin, P. T. Fox, J. Hardies, T. Q. Duong, and J. H. Gao, “Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8446–8451, 2010. View at Publisher · View at Google Scholar
  11. R. J. Maddock, M. H. Buonocore, S. P. Lavoie et al., “Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 Tesla,” Psychiatry Research, vol. 148, no. 1, pp. 47–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. P. Chih, J. He, T. S. Sly, and E. L. Roberts Jr., “Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices,” Brain Research, vol. 893, no. 1-2, pp. 143–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Dienel and L. Hertz, “Glucose and lactate metabolism during brain activation,” Journal of Neuroscience Research, vol. 66, no. 5, pp. 824–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. P. Chih and E. L. Roberts Jr., “Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 11, pp. 1263–1281, 2003. View at Publisher · View at Google Scholar
  15. J. Prichard, D. Rothman, E. Novotny et al., “Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 13, pp. 5829–5831, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Pellerin and P. J. Magistretti, “Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 22, pp. 10625–10629, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. P. G. Bittar, Y. Charnay, L. Pellerin, C. Bouras, and P. J. Magistretti, “Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 6, pp. 1079–1089, 1996. View at Google Scholar · View at Scopus
  18. P. J. Magistretti and L. Pellerin, “Cellular mechanisms of brain energy metabolism: relevance to functional brain imaging and to neurodegenerative disorders,” Annals of the New York Academy of Sciences, vol. 777, pp. 380–387, 1996. View at Google Scholar · View at Scopus
  19. M. Nedergaard, B. Ransom, and S. A. Goldman, “New roles for astrocytes: redefining the functional architecture of the brain,” Trends in Neurosciences, vol. 26, no. 10, pp. 523–530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Bélanger and P. J. Magistretti, “The role of astroglia in neuroprotection,” Dialogues in Clinical Neuroscience, vol. 11, no. 3, pp. 281–296, 2009. View at Google Scholar · View at Scopus
  21. K. Kacem, P. Lacombe, J. Seylaz, and G. Bonvento, “Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study,” Glia, vol. 23, no. 1, pp. 1–10, 1998. View at Google Scholar
  22. S. Morgello, R. R. Uson, E. J. Schwartz, and R. S. Haber, “The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes,” Glia, vol. 14, no. 1, pp. 43–54, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Haber, L. Zhou, and K. K. Murai, “Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses,” Journal of Neuroscience, vol. 26, no. 35, pp. 8881–8891, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Magistretti, “Neuron-glia metabolic coupling and plasticity,” Journal of Experimental Biology, vol. 209, part 12, pp. 2304–2311, 2006. View at Google Scholar
  25. A. M. Brown, S. B. Tekkok, and B. R. Ransom, “Energy transfer from astrocytes to axons: the role of CNS glycogen,” Neurochemistry International, vol. 45, no. 4, pp. 529–536, 2004. View at Publisher · View at Google Scholar
  26. D. Vilchez, S. Ros, D. Cifuentes et al., “Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy,” Nature Neuroscience, vol. 10, no. 11, pp. 1407–1413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Newman, D. L. Korol, and P. E. Gold, “Lactate produced by glycogenolysis in astrocytes regulates memory processing,” PLoS ONE, vol. 6, no. 12, Article ID e28427, 2011. View at Publisher · View at Google Scholar
  28. H. R. Zielke, C. L. Zielke, and P. J. Baab, “Direct measurement of oxidative metabolism in the living brain by microdialysis: a review,” Journal of Neurochemistry, vol. 109, no. 1, pp. 24–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Pellerin and P. J. Magistretti, “Sweet sixteen for ANLS,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 7, pp. 1152–1166, 2012. View at Publisher · View at Google Scholar
  30. C. L. Poitry-Yamate, S. Poitry, and M. Tsacopoulos, “Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina,” Journal of Neuroscience, vol. 15, no. 7, pp. 5179–5191, 1995. View at Google Scholar · View at Scopus
  31. N. R. Sibson, J. Shen, G. F. Mason, D. L. Rothman, K. L. Behar, and R. G. Shulman, “Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronal activity,” Developmental Neuroscience, vol. 20, no. 4-5, pp. 321–330, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Voutsinos-Porche, G. Bonvento, K. Tanaka et al., “Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex,” Neuron, vol. 37, no. 2, pp. 275–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. C. A. Stuart, I. R. Ross, M. E. A. Howell et al., “Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake,” Brain Research, vol. 1384, pp. 15–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Wang, J. M. Pascual, H. Yang et al., “A mouse model for Glut-1 haploinsufficiency,” Human Molecular Genetics, vol. 15, no. 7, pp. 1169–1179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Chuquet, P. Quilichini, E. A. Nimchinsky, and G. Buzsáki, “Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex,” Journal of Neuroscience, vol. 30, no. 45, pp. 15298–15303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Leino, D. Z. Gerhart, A. M. van Bueren, A. L. McCall, and L. R. Drewes, “Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain,” Journal of Neuroscience Research, vol. 49, no. 5, pp. 617–626, 1997. View at Google Scholar
  37. S. J. Vannucci, F. Maher, and I. A. Simpson, “Glucose transporter proteins in brain: delivery of glucose to neurons and glia,” Glia, vol. 21, no. 1, pp. 2–21, 1997. View at Google Scholar
  38. A. Schousboe, N. Westergaard, H. S. Waagepetersen, O. M. Larsson, I. J. Bakken, and U. Sonnewald, “Trafficking between glia and neurons of TCA cycle intermediates and related metabolites,” Glia, vol. 21, no. 1, pp. 99–105, 1997. View at Google Scholar · View at Scopus
  39. H. S. Waagepetersen, U. Sonnewald, O. M. Larsson, and A. Schousboe, “A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons,” Journal of Neurochemistry, vol. 75, no. 2, pp. 471–479, 2000. View at Google Scholar · View at Scopus
  40. B. Hassel and A. Brathe, “Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 2, pp. 327–336, 2000. View at Publisher · View at Google Scholar
  41. H. Qu, A. Håberg, O. Haraldseth, G. Unsgård, and U. Sonnewald, “13C MR spectroscopy study of lactate as substrate for rat brain,” Developmental Neuroscience, vol. 22, no. 5-6, pp. 429–436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Rouach, A. Koulakoff, V. Abudara, K. Willecke, and C. Giaume, “Astroglial metabolic networks sustain hippocampal synaptic transmission,” Science, vol. 322, no. 5907, pp. 1551–1555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Pellerin, G. Pellegri, P. G. Bittar et al., “Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle,” Developmental Neuroscience, vol. 20, no. 4-5, pp. 291–299, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. Larrabee, “Lactate metabolism and its effects on glucose metabolism in an excised neural tissue,” Journal of Neurochemistry, vol. 64, no. 4, pp. 1734–1741, 1995. View at Google Scholar · View at Scopus
  45. C. Véga, C. L. Poitry-Yamate, P. Jirounek, M. Tsacopoulos, and J. A. Coles, “Lactate is released and taken up by isolated rabbit vagus nerve during aerobic metabolism,” Journal of Neurochemistry, vol. 71, no. 1, pp. 330–337, 1998. View at Google Scholar · View at Scopus
  46. D. Smith, A. Pernet, W. A. Hallett, E. Bingham, P. K. Marsden, and S. A. Amiel, “Lactate: a preferred fuel for human brain metabolism in vivo,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, pp. 658–664, 2003. View at Publisher · View at Google Scholar
  47. E. K. Ainscow, S. Mirshamsi, T. Tang, M. L. J. Ashford, and G. A. Rutter, “Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels,” Journal of Physiology, vol. 544, no. 2, pp. 429–445, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. G. A. Dienel, “Brain lactate metabolism: the discoveries and the controversies,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 7, pp. 1107–1138, 2012. View at Publisher · View at Google Scholar
  49. S. Passarella, L. de Bari, D. Valenti, R. Pizzuto, G. Paventi, and A. Atlante, “Mitochondria and l-lactate metabolism,” FEBS Letters, vol. 582, no. 25-26, pp. 3569–3576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. G. A. Brooks, H. Dubouchaud, M. Brown, J. P. Sicurello, and C. Eric Butz, “Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1129–1134, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Hashimoto, R. Hussien, and G. A. Brooks, “Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex,” The American Journal of Physiology, vol. 290, no. 6, pp. E1237–E1244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Sahlin, M. Fernström, M. Svensson, and M. Tonkonogi, “No evidence of an intracellular lactate shuttle in rat skeletal muscle,” Journal of Physiology, vol. 541, no. 2, pp. 569–574, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Yoshida, G. P. Holloway, V. Ljubicic et al., “Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle,” Journal of Physiology, vol. 582, no. 3, pp. 1317–1335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Atlante, L. de Bari, A. Bobba, E. Marra, and S. Passarella, “Transport and metabolism of l-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis,” Biochimica et Biophysica Acta, vol. 1767, no. 11, pp. 1285–1299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Lemire, R. J. Mailloux, and V. D. Appanna, “Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1),” PLoS ONE, vol. 3, no. 2, Article ID e1550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Hashimoto, R. Hussien, H. S. Cho, D. Kaufer, and G. A. Brooks, “Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles,” PLoS ONE, vol. 3, no. 8, Article ID e2915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Schurr and R. S. Payne, “Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study,” Neuroscience, vol. 147, no. 3, pp. 613–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Schurr, “Lactate: the ultimate cerebral oxidative energy substrate,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 1, pp. 142–152, 2006. View at Google Scholar
  59. H. Takanaga and W. B. Frommer, “Facilitative plasma membrane transporters function during ER transit,” FASEB Journal, vol. 24, no. 8, pp. 2849–2858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, vol. 294, no. 5544, pp. 1030–1038, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. M. Alberini, “Transcription factors in long-term memory and synaptic plasticity,” Physiological Reviews, vol. 89, no. 1, pp. 121–145, 2009. View at Publisher · View at Google Scholar
  62. A. J. Silva, J. H. Kogan, P. W. Frankland, and S. Kida, “CREB and memory,” Annual Review of Neuroscience, vol. 21, pp. 127–148, 1998. View at Publisher · View at Google Scholar
  63. A. Suzuki, S. A. Stern, O. Bozdagi et al., “Astrocyte-neuron lactate transport is required for long-term memory formation,” Cell, vol. 144, no. 5, pp. 810–823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Gibbs, D. G. Anderson, and L. Hertz, “Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens,” Glia, vol. 54, no. 3, pp. 214–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Rafiki, J. L. Boulland, A. P. Halestrap, O. P. Ottersen, and L. Bergersen, “Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain,” Neuroscience, vol. 122, no. 3, pp. 677–688, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Debernardi, K. Pierre, S. Lengacher, P. J. Magistretti, and L. Pellerin, “Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures,” Journal of Neuroscience Research, vol. 73, no. 2, pp. 141–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Pellerin, L. H. Bergersen, A. P. Halestrap, and K. Pierre, “Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain,” Journal of Neuroscience Research, vol. 79, no. 1-2, pp. 55–64, 2005. View at Publisher · View at Google Scholar
  68. C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 12, pp. 4245–4249, 1985. View at Google Scholar · View at Scopus
  69. C. L. Masters, G. Multhaup, G. Simms, J. Pottgiesser, R. N. Martins, and K. Beyreuther, “Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels,” EMBO Journal, vol. 4, no. 11, pp. 2757–2763, 1985. View at Google Scholar · View at Scopus
  70. D. J. Selkoe, “The cell biology β-amyloid precursor protein and presenilin in Alzheimer's disease,” Trends in Cell Biology, vol. 8, no. 11, pp. 447–453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Hardy, “Amyloid, the presenilins and Alzheimer's disease,” Trends in Neurosciences, vol. 20, no. 4, pp. 154–159, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  73. Y. Sagara, R. Dargusch, F. G. Klier, D. Schubert, and C. Behl, “Increased antioxidant enzyme activity in amyloid β protein-resistant cells,” Journal of Neuroscience, vol. 16, no. 2, pp. 497–505, 1996. View at Google Scholar · View at Scopus
  74. C. Behl, J. B. Davis, R. Lesley, and D. Schubert, “Hydrogen peroxide mediates amyloid β protein toxicity,” Cell, vol. 77, no. 6, pp. 817–827, 1994. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Tillement, L. Lecanu, and V. Papadopoulos, “Alzheimer's disease: effects of β-amyloid on mitochondria,” Mitochondrion, vol. 11, no. 1, pp. 13–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. D. A. Butterfield, T. Reed, S. F. Newman, and R. Sultana, “Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment,” Free Radical Biology and Medicine, vol. 43, no. 5, pp. 658–677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. W. R. Markesbery, “Oxidative stress hypothesis in Alzheimer's disease,” Free Radical Biology and Medicine, vol. 23, no. 1, pp. 134–147, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Behl, “Amyloid β-protein toxicity and oxidative stress in Alzheimer's disease,” Cell and Tissue Research, vol. 290, no. 3, pp. 471–480, 1997. View at Publisher · View at Google Scholar · View at Scopus
  79. C. S. Casley, L. Canevari, J. M. Land, J. B. Clark, and M. A. Sharpe, “β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities,” Journal of Neurochemistry, vol. 80, no. 1, pp. 91–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Caspersen, N. Wang, J. Yao et al., “Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease,” FASEB Journal, vol. 19, no. 14, pp. 2040–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Fernández-Vizarra, A. P. Fernández, S. Castro-Blanco et al., “Intra- and extracellular Aβ and PHF in clinically evaluated cases of Alzheimer's disease,” Histology and Histopathology, vol. 19, no. 3, pp. 823–844, 2004. View at Google Scholar · View at Scopus
  82. J. W. Lustbader, M. Cirilli, C. Lin et al., “ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease,” Science, vol. 304, no. 5669, pp. 448–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Manczak, T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, and P. H. Reddy, “Mitochondria are a direct site of A β accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression,” Human Molecular Genetics, vol. 5, no. 9, pp. 1437–1449, 2006. View at Publisher · View at Google Scholar
  84. J. Yao, H. Du, S. Yan et al., “Inhibition of amyloid-β(Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 6, pp. 2313–2320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. L. F. Hernandez-Zimbron, J. Luna-Munoz, R. Mena et al., “Amyloid-β peptide binds to cytochrome C oxidase subunit 1,” PLoS ONE, vol. 7, no. 8, Article ID e42344, 2012. View at Publisher · View at Google Scholar
  86. W. K. Hong, E. H. Han, D. G. Kim, J. Y. Ahn, J. S. Park, and B. G. Han, “Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits,” Neurochemical Research, vol. 32, no. 9, pp. 1483–1488, 2007. View at Publisher · View at Google Scholar
  87. G. E. Gibson, K. F. R. Sheu, and J. P. Blass, “Abnormalities of mitochondrial enzymes in Alzheimer disease,” Journal of Neural Transmission, vol. 105, no. 8-9, pp. 855–870, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. W. S. Liang, E. M. Reiman, J. Valla et al., “Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4441–4446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. W. M. Brooks, P. J. Lynch, C. C. Ingle et al., “Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease,” Brain Research, vol. 1127, no. 1, pp. 127–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. J. T. Newington, A. Pitts, A. Chien, R. Arseneault, D. Schubert, and R. C. Cumming, “Amyloid beta resistance in nerve cell lines is mediated by the warburg effect,” PLoS ONE, vol. 6, no. 4, Article ID e19191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Soucek, R. Cumming, R. Dargusch, P. Maher, and D. Schubert, “The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid β peptide,” Neuron, vol. 39, no. 1, pp. 43–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Papandreou, R. A. Cairns, L. Fontana, A. L. Lim, and N. C. Denko, “HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption,” Cell Metabolism, vol. 3, no. 3, pp. 187–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. G. L. Semenza, “Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis,” Trends in Cardiovascular Medicine, vol. 6, no. 5, pp. 151–157, 1996. View at Publisher · View at Google Scholar
  94. G. L. Semenza, B. H. Jiang, S. W. Leung et al., “Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1,” The Journal of Biological Chemistry, vol. 271, no. 51, pp. 32529–32537, 1996. View at Google Scholar · View at Scopus
  95. J. W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang, “HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia,” Cell Metabolism, vol. 3, no. 3, pp. 177–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. W. H. Koppenol, P. L. Bounds, and C. V. Dang, “Otto Warburg's contributions to current concepts of cancer metabolism,” Nature Reviews Cancer, vol. 11, pp. 325–337, 2011. View at Publisher · View at Google Scholar
  97. J. T. Newington, T. Rappon, S. Albers, D. Y. Wong, R. J. Rylett, and R. C. Cumming, “Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid beta and other toxins by decreasing mitochondrial respiration and ROS production,” The Journal of Biological Chemistry, vol. 287, no. 44, pp. 37245–37258, 2012. View at Publisher · View at Google Scholar
  98. M. Zilberter, A. Ivanov, S. Ziyatdinova et al., “Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer's disease,” Journal of Neurochemistry, vol. 125, no. 1, pp. 157–171, 2013. View at Publisher · View at Google Scholar
  99. M. Bigl, M. K. Brückner, T. Arendt, V. Bigl, and K. Eschrich, “Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease,” Journal of Neural Transmission, vol. 106, no. 5-6, pp. 499–511, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. E. K. Perry, R. H. Perry, and B. E. Tomlinson, “Coenzyme A-acetylating enzymes in Alzheimer's disease: possible cholinergic “compartment” of pyruvate dehydrogenase,” Neuroscience Letters, vol. 18, no. 1, pp. 105–110, 1980. View at Publisher · View at Google Scholar · View at Scopus
  101. K. F. R. Sheu, Y. T. Kim, J. P. Blass, and M. E. Weksler, “An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer's disease brain,” Annals of Neurology, vol. 17, no. 5, pp. 444–449, 1985. View at Google Scholar · View at Scopus
  102. S. Sorbi, E. D. Bird, and J. P. Blass, “Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain,” Annals of Neurology, vol. 13, no. 1, pp. 72–78, 1983. View at Google Scholar · View at Scopus
  103. R. Mielke, J. Kessler, B. Szelies, K. Herholz, K. Wienhard, and W. D. Heiss, “Normal and pathological aging—findings of positron-emission-tomography,” Journal of Neural Transmission, vol. 105, no. 8-9, pp. 821–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. W. D. Heiss, B. Szelies, J. Kessler, and K. Herholz, “Abnormalities of energy metabolism in Alzheimer's disease studied with PET,” Annals of the New York Academy of Sciences, vol. 640, pp. 65–71, 1991. View at Google Scholar · View at Scopus
  105. L. Mosconi, “Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 4, pp. 486–510, 2005. View at Publisher · View at Google Scholar
  106. A. G. Vlassenko, S. N. Vaishnavi, L. Couture et al., “Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17763–17767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. W. J. Powers, J. L. Rosenbaum, C. S. Dence, J. Markham, and T. O. Videen, “Cerebral glucose transport and metabolism in preterm human infants,” Journal of Cerebral Blood Flow and Metabolism, vol. 18, pp. 632–638, 1998. View at Publisher · View at Google Scholar
  108. S. Cunnane, S. Nugent, M. Roy et al., “Brain fuel metabolism, aging, and Alzheimer's disease,” Nutrition, vol. 27, no. 1, pp. 3–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. R. La Joie, A. Perrotin, L. Barre et al., “Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer's disease dementia,” Journal of Neuroscience, vol. 32, no. 46, pp. 16265–16273, 2012. View at Publisher · View at Google Scholar
  110. W. J. Jagust, S. M. Landau, and Alzheimer's Disease Neuroimaging Initiative, “Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging,” Journal of Neuroscience, vol. 32, no. 50, pp. 18227–18233, 2012. View at Publisher · View at Google Scholar
  111. R. W. Mahley and Y. Huang, “Apolipoprotein e sets the stage: response to injury triggers neuropathology,” Neuron, vol. 76, no. 5, pp. 871–885, 2012. View at Publisher · View at Google Scholar
  112. S. Chang, T. R. Ma, R. D. Miranda, M. E. Balestra, R. W. Mahley, and Y. Huang, “Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18694–18699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Nakamura, A. Watanabe, T. Fujino, T. Hosono, and M. Michikawa, “Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells,” Molecular Neurodegeneration, vol. 4, no. 1, article 35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. J. A. Driver, A. Beiser, R. Au et al., “Inverse association between cancer and Alzheimer's disease: results from the framingham heart study,” The British Medical Journal, vol. 344, Article ID e1442, 2012. View at Publisher · View at Google Scholar
  115. A. Bajaj, J. A. Driver, and E. S. Schernhammer, “Parkinson's disease and cancer risk: a systematic review and meta-analysis,” Cancer Causes and Control, vol. 21, no. 5, pp. 697–707, 2010. View at Publisher · View at Google Scholar
  116. J. A. Driver, G. Logroscino, J. E. Buring, J. M. Gaziano, and T. Kurth, “A prospective cohort study of cancer incidence following the diagnosis of Parkinson's disease,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 6, pp. 1260–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Berthet, H. Lei, J. Thevenet, R. Gruetter, P. J. Magistretti, and L. Hirt, “Neuroprotective role of lactate after cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 11, pp. 1780–1789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Berthet, X. Castillo, P. J. Magistretti, and L. Hirt, “New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration,” Cerebrovascular Diseases, vol. 34, no. 5-6, pp. 329–335, 2012. View at Publisher · View at Google Scholar
  119. M. T. Wyss, R. Jolivet, A. Buck, P. J. Magistretti, and B. Weber, “In vivo evidence for lactate as a neuronal energy source,” Journal of Neuroscience, vol. 31, no. 20, pp. 7477–7485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Coco, S. Caggia, G. Musumeci et al., “Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures,” Journal of Neuroscience Research, vol. 91, no. 2, pp. 313–320, 2013. View at Publisher · View at Google Scholar
  121. P. Bekinschtein, M. Cammarota, C. Katche et al., “BDNF is essential to promote persistence of long-term memory storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2711–2716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. C. J. de Saedeleer, T. Copetti, P. E. Porporato, J. Verrax, O. Feron, and P. Sonveaux, “Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells,” PLoS ONE, vol. 7, no. 10, Article ID e46571, 2012. View at Publisher · View at Google Scholar
  123. T. Hashimoto, R. Hussien, S. Oommen, K. Gohil, and G. A. Brooks, “Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis,” FASEB Journal, vol. 21, no. 10, pp. 2602–2612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Yamanishi, K. Katsumura, T. Kobayashi, and D. G. Puro, “Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature,” The American Journal of Physiology, vol. 290, no. 3, pp. H925–H934, 2006. View at Publisher · View at Google Scholar
  125. G. R. J. Gordon, H. B. Choi, R. L. Rungta, G. C. R. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature, vol. 456, no. 7223, pp. 745–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Overgaard, P. Rasmussen, A. M. Bohm et al., “Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain,” FASEB Journal, vol. 26, no. 7, pp. 3012–3020, 2012. View at Publisher · View at Google Scholar
  127. K. Ide, I. K. Schmalbruch, B. Quistorff, A. Horn, and N. H. Secher, “Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise,” Journal of Physiology, vol. 522, no. 1, pp. 159–164, 2000. View at Google Scholar · View at Scopus
  128. P. Rasmussen, M. T. Wyss, and C. Lundby, “Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans,” FASEB Journal, vol. 25, no. 9, pp. 2865–2873, 2011. View at Publisher · View at Google Scholar
  129. B. Quistorff, N. H. Secher, and J. J. Van Lieshout, “Lactate fuels the human brain during exercise,” FASEB Journal, vol. 22, no. 10, pp. 3443–3449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. G. van Hall, M. Strømstad, P. Rasmussen et al., “Blood lactate is an important energy source for the human brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 6, pp. 1121–1129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Roig, K. Skriver, J. Lundbye-Jensen, B. Kiens, and J. B. Nielsen, “A single bout of exercise improves motor memory,” PLoS ONE, vol. 7, no. 9, Article ID e44594, 2012. View at Publisher · View at Google Scholar
  132. M. Maesako, K. Uemura, M. Kubota et al., “Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice,” The Journal of Biological Chemistry, vol. 287, pp. 23024–23033, 2012. View at Publisher · View at Google Scholar
  133. A. S. Buchman, P. A. Boyle, L. Yu, R. C. Shah, R. S. Wilson, and D. A. Bennett, “Total daily physical activity and the risk of AD and cognitive decline in older adults,” Neurology, vol. 79, no. 10, p. 1071, 2012. View at Publisher · View at Google Scholar
  134. N. Scarmeas, J. A. Luchsinger, N. Schupf et al., “Physical activity, diet, and risk of Alzheimer disease,” The Journal of the American Medical Association, vol. 302, no. 6, pp. 627–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. L. T. Ferris, J. S. Williams, and C. L. Shen, “The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function,” Medicine and Science in Sports and Exercise, vol. 39, no. 4, pp. 728–734, 2007. View at Publisher · View at Google Scholar
  136. J. Kalman, A. Palotas, N. Bodi et al., “Lactate infusion fails to improve semantic categorization in Alzheimer's disease,” Brain Research Bulletin, vol. 65, no. 6, pp. 533–539, 2005. View at Publisher · View at Google Scholar
  137. C. A. Manning, M. E. Ragozzino, and P. E. Gold, “Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer's type,” Neurobiology of Aging, vol. 14, no. 6, pp. 523–528, 1993. View at Publisher · View at Google Scholar · View at Scopus
  138. X. Wang, W. Zheng, J. W. Xie et al., “Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model,” Molecular Neurodegeneration, vol. 5, no. 1, article 46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. J. Janson, T. Laedtke, J. E. Parisi, P. O'Brien, R. C. Petersen, and P. C. Butler, “Increased risk of type 2 diabetes in Alzheimer disease,” Diabetes, vol. 53, no. 2, pp. 474–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. G. J. Biessels, L. J. Kappelle, and Utrecht Diabetic Encephalopathy Study Group, “Increased risk of Alzheimer's disease in type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology?” Biochemical Society Transactions, vol. 33, part 5, pp. 1041–1044, 2005. View at Publisher · View at Google Scholar
  141. R. A. Whitmer, “Type 2 diabetes and risk of cognitive impairment and dementia,” Current Neurology and Neuroscience Reports, vol. 7, no. 5, pp. 373–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. R. J. Bateman, C. Xiong, T. L. Benzinger et al., “Clinical and biomarker changes in dominantly inherited Alzheimer's disease,” The New England Journal of Medicine, vol. 367, pp. 795–804, 2012. View at Publisher · View at Google Scholar
  143. T. L. Benzinger, “Elevated PIB precedes dementia in autosomal dominant Alzheimer’s disease: PIB, FDG and atrophy in the DIAN cohort,” Alzheimer's and Dementia, vol. 8, no. 4, article P57, 2012. View at Google Scholar
  144. C. Bouras, P. R. Hof, P. Giannakopoulos, J. P. Michel, and J. H. Morrison, “Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital,” Cerebral Cortex, vol. 4, no. 2, pp. 138–150, 1994. View at Google Scholar · View at Scopus
  145. J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease,” Annals of Neurology, vol. 45, no. 3, pp. 358–368, 1999. View at Google Scholar
  146. A. Savonenko, G. M. Xu, T. Melnikova et al., “Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: relationships to β-amyloid deposition and neurotransmitter abnormalities,” Neurobiology of Disease, vol. 18, no. 3, pp. 602–617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. T. Spires-Jones and S. Knafo, “Spines, plasticity, and cognition in Alzheimer's model mice,” Neural Plasticity, vol. 2012, Article ID 319836, 10 pages, 2012. View at Publisher · View at Google Scholar