Table of Contents
Journal of Nonlinear Dynamics
Volume 2014, Article ID 310834, 10 pages
Research Article

Frequency Response of an Impacting Lap Joint

Civil Engineering, The University of Mississippi, Carrier Hall 106, P.O. Box 1848, MS 38677, USA

Received 27 June 2013; Revised 6 January 2014; Accepted 6 January 2014; Published 27 February 2014

Academic Editor: Giovanni P. Galdi

Copyright © 2014 Amir M. Rahmani and Elizabeth K. Ervin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Damage or failure of a relatively small component can precipitate the failure of a larger part of a structure. The behavior of damaged or worn joints is of particular concern. To address contact/impact in structural systems, this work models a structural lap joint from first principles. A beam with four stops and gaps is used to simulate a loose or damaged lap joint, which also represents designed manufacturing clearances in mechanical systems. The goal is to generate frequency responses to identify the local shock effect due to impact. Spatial and temporal solutions are presented for an example case. Converged time histories were used to generate the impulse as a metric of frequency response. Facilitating mode contribution calculations, the metric of impulse proves to be an excellent indicator of complexities in the beam's motion due to excitation frequency. Noncontact regions, sticking motions, local extrema, grazing impacts, and aperiodicities are identifiable for specific operating parameters. These conditions indicate when harmful impact may occur that can ultimately cause local damage within a structure. Knowledge of dangerous operating conditions can better focus on inspection before propagation occurs.