Abstract

Mesoporous silicon structures are fabricated during an anodization process of highly doped n-type silicon in hydrofluoric acid solution. The resulting pores are oriented perpendicular to the surface and exhibit a diameter of about 50 nm and a length up to 50 μm, controlled by the etching time. The growth of the pores is self-organized and depends on the crystal orientation of the used silicon wafer. The achieved channels, highly oriented along the (100) direction, are filled with nickel in a second electrochemical step. The deposition process leads to a distribution between high aspect ratio Ni-wires and Ni-particles of the incorporated metal. This achieved (porous silicon/Ni)-nanocomposite system exhibits a twofold switching behavior of the magnetization curve at two different field ranges. This property gives rise to high-magnetic field sensor applications based on a silicon technology.