Abstract

A 55 nm samarium film capped with a 10 nm palladium overlayer switched from a metallic reflecting to a semiconducting, transparent in visible state during ex-situ hydrogen loading via electrochemical means in 1 M KOH electrolytic aqueous solution at room temperature. The switching between metal to semiconductor was accompanied by measurement of transmittance during hydrogen loading/unloading. The effect of current density on switching and thermodynamic properties was studied between dihydride state (FCC phase) and trihydride state (hexagonal phase). From the plateau of partial pressure of hydrogen at x=2.6, enthalpy of formation was calculated at different current densities. The diffusion coefficients and switching kinetics are shown to depend on applied current density.