Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2008 (2008), Article ID 361464, 9 pages
http://dx.doi.org/10.1155/2008/361464
Research Article

Statistical Molecular Dynamics Study of (111) and (100) Ni Nanocontacts: Evidences of Pentagonal Nanowires

1Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
2Centro de Física, Instituto Venezolano de Investigaciones Científicas Altos de Pipe, 1020-A Caracas, Venezuela
3Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain

Received 21 September 2007; Accepted 11 January 2008

Academic Editor: Jun Lou

Copyright © 2008 P. García-Mochales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Poole and F. J. Owens, Introduction to the Nanotechnology, Wiley-VCH, Weinheim, Germany, 2003.
  2. N. Agraït, A. L. Yeyati, and J. M. van Ruitenbeek, “Quantum properties of atomic-sized conductors,” Physics Reports, vol. 377, no. 2-3, pp. 81–279, 2003. View at Publisher · View at Google Scholar
  3. R. Landauer, “Electrical resistance of disordered one-dimensional lattices,” Philosophical Magazine, vol. 21, no. 172, pp. 863–867, 1970. View at Publisher · View at Google Scholar
  4. R. Landauer, “Electrical transport in open and closed systems,” Zeitschrift für Physik B, vol. 68, no. 2-3, pp. 217–228, 1987. View at Publisher · View at Google Scholar
  5. J. I. Pascual, J. Méndez, J. Gómez-Herrero, A. M. Baró, N. García, and V. T. Binh, “Quantum contact in gold nanostructures by scanning tunneling microscopy,” Physical Review Letters, vol. 71, no. 12, pp. 1852–1855, 1993. View at Publisher · View at Google Scholar
  6. L. Olesen, E. Laegsgaard, I. Stensgaard et al., “Quantized conductance in an atom-sized point contact,” Physical Review Letters, vol. 72, no. 14, pp. 2251–2254, 1994. View at Publisher · View at Google Scholar
  7. L. Olesen, E. Laegsgaard, I. Stensgaard et al., “Olesen et al. reply:,” Physical Review Letters, vol. 74, no. 11, p. 2147, 1995. View at Publisher · View at Google Scholar
  8. J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, “The signature of conductance quantization in metallic point contacts,” Nature, vol. 375, no. 6534, pp. 767–769, 1995. View at Publisher · View at Google Scholar
  9. Y. Kondo and K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Physical Review Letters, vol. 79, no. 18, pp. 3455–3458, 1997. View at Publisher · View at Google Scholar
  10. C. Z. Li and N. J. Tao, “Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution,” Applied Physics Letters, vol. 72, no. 8, pp. 894–896, 1998. View at Publisher · View at Google Scholar
  11. A. I. Yanson and J. M. van Ruitenbeek, “Do histograms constitute a proof for conductance quantization?” Physical Review Letters, vol. 79, no. 11, p. 2157, 1997. View at Publisher · View at Google Scholar
  12. A. Hasmy, E. Medina, and P. A. Serena, “From favorable atomic configurations to supershell structures: a new interpretation of conductance histograms,” Physical Review Letters, vol. 86, no. 24, pp. 5574–5577, 2001. View at Publisher · View at Google Scholar
  13. E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret, “Conduction channel transmissions of atomic-size aluminum contacts,” Physical Review Letters, vol. 78, no. 18, pp. 3535–3538, 1997. View at Publisher · View at Google Scholar
  14. C. Sirvent, J. G. Rodrigo, S. Vieira, L. Jurczyszyn, N. Mingo, and F. Flores, “Conductance step for a single-atom contact in the scanning tunneling microscope: Noble and transition metals,” Physical Review B, vol. 53, no. 23, pp. 16086–16090, 1996. View at Publisher · View at Google Scholar
  15. J. L. Costa-Krämer, “Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires,” Physical Review B, vol. 55, no. 8, pp. R4875–R4878, 1997. View at Publisher · View at Google Scholar
  16. H. Oshima and K. Miyano, “Spin-dependent conductance quantization in nickel point contacts,” Applied Physics Letters, vol. 73, no. 15, pp. 2203–2205, 1998. View at Publisher · View at Google Scholar
  17. T. Ono, Y. Ooka, H. Miyajima, and Y. Otani, “2e2/h to e2/h switching of quantum conductance associated with a change in nanoscale ferromagnetic domain structure,” Applied Physics Letters, vol. 75, no. 11, pp. 1622–1624, 1999. View at Publisher · View at Google Scholar
  18. F. Komori and K. Nakatsuji, “Quantized conductance through atomic-sized iron contacts at 4.2 K,” Journal of the Physical Society of Japan, vol. 68, no. 12, pp. 3786–3789, 1999. View at Publisher · View at Google Scholar
  19. N. García, M. Muñoz, and Y.-W. Zhao, “Magnetoresistance in excess of 200% in ballistic Ni nanocontacts at room temperature and 100 Oe,” Physical Review Letters, vol. 82, no. 14, pp. 2923–2926, 1999. View at Publisher · View at Google Scholar
  20. H. D. Chopra and S. Z. Hua, “Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature,” Physical Review B, vol. 66, no. 2, Article ID 020403, 3 pages, 2002. View at Publisher · View at Google Scholar
  21. A. I. Yanson, Atomic chains and electronic shells: quantum mechanisns for the formation of nanowires, Ph. D. thesis, Universiteit Leiden, Leiden, The Netherlands, 2001.
  22. D. J. Bakker, Y. Noat, A. I. Yanson, and J. M. van Ruitenbeek, “Effect of disorder on the conductance of a Cu atomic point contact,” Physical Review B, vol. 65, no. 23, Article ID 235416, 5 pages, 2002. View at Publisher · View at Google Scholar
  23. J. Li, T. Kanzaki, K. Murakoshi, and Y. Nakato, “Metal-dependent conductance quantization of nanocontacts in solution,” Applied Physics Letters, vol. 81, no. 1, pp. 123–125, 2002. View at Publisher · View at Google Scholar
  24. R. H. M. Smit, From quantum point contacts to monatomic chains: fabrication and characterization of the ultimate nanowire, Ph. D. thesis, Universiteit Leiden, Leiden, The Netherlands, 2003.
  25. V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte, “Evidence for spontaneous spin-polarized transport in magnetic nanowires,” Physical Review Letters, vol. 91, no. 9, Article ID 096801, 4 pages, 2003. View at Publisher · View at Google Scholar
  26. C. Untiedt, D. M. T. Dekker, D. Djukic, and J. M. van Ruitenbeek, “Absence of magnetically induced fractional quantization in atomic contacts,” Physical Review B, vol. 69, no. 8, Article ID 081401, 4 pages, 2004. View at Publisher · View at Google Scholar
  27. C.-S. Yang, C. Zhang, J. Redepenning, and B. Doudin, “In situ magnetoresistance of Ni nanocontacts,” Applied Physics Letters, vol. 84, no. 15, pp. 2865–2867, 2004. View at Publisher · View at Google Scholar
  28. M. R. Sullivan, D. A. Boehm, D. A. Ateya, S. Z. Hua, and H. D. Chopra, “Ballistic magnetoresistance in nickel single-atom conductors without magnetostriction,” Physical Review B, vol. 71, no. 2, Article ID 024412, 8 pages, 2005. View at Publisher · View at Google Scholar
  29. K. Sekiguchi, E. Saitoh, and H. Miyajima, “Conductance quantization by the application of magnetic fields in ballistic Ni nanocontacts,” Journal of Applied Physics, vol. 97, no. 10, 3 pages, 2005. View at Publisher · View at Google Scholar
  30. M. Díaz, J. L. Costa-Krämer, and P. A. Serena, “Partial versus total conductance histograms: a tool to identify magnetic effects in nanocontacs,” Journal of Magnetism and Magnetic Materials, vol. 305, no. 2, pp. 497–503, 2006. View at Publisher · View at Google Scholar
  31. D. Jacob, M. J. Caturla, M. R. Calvo, C. Untiedt, and J. J. Palacios, “Mechanical and electrical properties of Ni nanocontacts,” in Proceedings of IEEE Nanotechnology Materials and Devices Conference (NMDC '06), vol. 1, pp. 236–237, Gyeongju, South Korea, October 2006. View at Publisher · View at Google Scholar
  32. C. Untiedt, M. J. Caturla, M. R. Calvo, J. J. Palacios, R. C. Segers, and J. M. van Ruitenbeek, “Formation of a metallic contact: jump to contact revisited,” Physical Review Letters, vol. 98, no. 20, Article ID 206801, 4 pages, 2007. View at Publisher · View at Google Scholar
  33. D. Jacob, J. Fernández-Rossier, and J. J. Palacios, “Magnetic and orbital blocking in Ni nanocontacts,” Physical Review B, vol. 71, no. 22, Article ID 220403, 4 pages, 2005. View at Publisher · View at Google Scholar
  34. M. Díaz, J. L. Costa-Krämer, P. A. Serena, E. Medina, and A. Hasmy, “Simulations and experiments of aluminum conductance histograms,” Nanotechnology, vol. 12, no. 2, pp. 118–120, 2001. View at Publisher · View at Google Scholar
  35. E. Medina, M. Díaz, N. León et al., “Ionic shell and subshell structures in aluminum and gold nanocontacts,” Physical Review Letters, vol. 91, no. 2, Article ID 026802, 4 pages, 2003. View at Publisher · View at Google Scholar
  36. A. Hasmy, A. J. Pérez-Jiménez, J. J. Palacios et al., “Ballistic resistivity in aluminum nanocontacts,” Physical Review B, vol. 72, no. 24, Article ID 245405, 5 pages, 2005. View at Publisher · View at Google Scholar
  37. P. García-Mochales, S. Peláez, P. A. Serena, E. Medina, and A. Hasmy, “Breaking processes in nickel nanocontacts: a statistical description,” Applied Physics A, vol. 81, no. 8, pp. 1545–1549, 2005. View at Publisher · View at Google Scholar
  38. F. Pauly, M. Dreher, J. K. Viljas, M. Häfner, J. C. Cuevas, and P. Nielaba, “Theoretical analysis of the conductance histograms and structural properties of Ag, Pt, and Ni nanocontacts,” Physical Review B, vol. 74, no. 23, Article ID 235106, 21 pages, 2006. View at Publisher · View at Google Scholar
  39. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture,” Science, vol. 248, no. 4954, pp. 454–461, 1990. View at Publisher · View at Google Scholar
  40. W. D. Luedtke and U. Landman, “Solid and liquid junctions,” Computational Materials Science, vol. 1, no. 1, pp. 1–24, 1992. View at Publisher · View at Google Scholar
  41. A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, “Conditions for conductance quantization in realistic models of atomic-scale metallic contacts,” Physical Review B, vol. 52, no. 7, pp. 5036–5051, 1995. View at Publisher · View at Google Scholar
  42. M. R. Sørensen, M. Brandbyge, and K. W. Jacobsen, “Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms,” Physical Review B, vol. 57, no. 6, pp. 3283–3294, 1998. View at Publisher · View at Google Scholar
  43. H. Ikeda, Y. Qi, T. Çagin, K. Samwer, W. L. Johnson, and W. A. Goddard III, “Strain rate induced amorphization in metallic nanowires,” Physical Review Letters, vol. 82, no. 14, pp. 2900–2903, 1999. View at Publisher · View at Google Scholar
  44. P. S. Branício and J.-P. Rino, “Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study,” Physical Review B, vol. 62, no. 24, pp. 16950–16955, 2000. View at Publisher · View at Google Scholar
  45. S. R. Bahn and K. W. Jacobsen, “Chain formation of metal atoms,” Physical Review Letters, vol. 87, no. 26, Article ID 266101, 4 pages, 2001. View at Publisher · View at Google Scholar
  46. J. W. T. Heemskerk, Y. Noat, D. J. Bakker, J. M. van Ruitenbeek, B. J. Thijsse, and P. Klaver, “Current-induced transition in atomic-sized contacts of metallic alloys,” Physical Review B, vol. 67, no. 11, Article ID 115416, 5 pages, 2003. View at Publisher · View at Google Scholar
  47. Y.-H. Wen, Z.-Z. Zhu, G.-F. Shao, and R.-Z. Zhu, “The uniaxial tensile deformation of Ni nanowire: atomic-scale computer simulations,” Physica E, vol. 27, no. 1-2, pp. 113–120, 2005. View at Publisher · View at Google Scholar
  48. B. Wang, D. Shi, J. Jia, G. Wang, X. Chen, and J. Zhao, “Elastic and plastic deformations of nickel nanowires under uniaxial compression,” Physica E, vol. 30, no. 1-2, pp. 45–50, 2005. View at Publisher · View at Google Scholar
  49. H. S. Park, K. Gall, and J. A. Zimmerman, “Shape memory and pseudoelasticity in metal nanowires,” Physical Review Letters, vol. 95, no. 25, Article ID 255504, 4 pages, 2005. View at Publisher · View at Google Scholar
  50. M. Dreher, F. Pauly, J. Heurich, J. C. Cuevas, E. Scheer, and P. Nielaba, “Structure and conductance histogram of atomic-sized Au contacts,” Physical Review B, vol. 72, no. 7, Article ID 075435, 11 pages, 2005. View at Publisher · View at Google Scholar
  51. M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Physical Review Letters, vol. 50, no. 17, pp. 1285–1288, 1983. View at Publisher · View at Google Scholar
  52. S. M. Foiles, “Application of the embedded-atom method to liquid transition metals,” Physical Review B, vol. 32, no. 6, pp. 3409–3415, 1985. View at Publisher · View at Google Scholar
  53. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations,” Physical Review B, vol. 59, no. 5, pp. 3393–3407, 1999. View at Publisher · View at Google Scholar
  54. W. Liang and M. Zhou, “Atomistic simulations reveal shape memory of fcc metal nanowires,” Physical Review B, vol. 73, no. 11, Article ID 115409, 11 pages, 2006. View at Publisher · View at Google Scholar
  55. Y. V. Sharvin, “A possible method for studying fermi surfaces,” Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 48, pp. 984–985, 1965. View at Google Scholar
  56. Y. V. Sharvin, “A possible method for studying fermi surfaces,” Soviet Physics JETP, vol. 21, pp. 655–656, 1965. View at Google Scholar
  57. H. Mehrez and S. Ciraci, “Yielding and fracture mechanisms of nanowires,” Physical Review B, vol. 56, no. 19, pp. 12632–12642, 1997. View at Publisher · View at Google Scholar
  58. P. Sen, O. Gülseren, T. Yildirim, I. P. Batra, and S. Ciraci, “Pentagonal nanowires: a first-principles study of the atomic and electronic structure,” Physical Review B, vol. 65, no. 23, Article ID 235433, 7 pages, 2002. View at Publisher · View at Google Scholar
  59. J. C. Gonzälez, V. Rodrigues, J. Bettini et al., “Indication of unusual pentagonal structures in atomic-size Cu namwires,” Physical Review Letters, vol. 93, no. 12, Article ID 126103, 4 pages, 2004. View at Publisher · View at Google Scholar
  60. O. Gülseren, F. Ercolessi, and E. Tosatti, “Noncrystalline structures of ultrathin unsupported nanowires,” Physical Review Letters, vol. 80, no. 17, pp. 3775–3778, 1998. View at Publisher · View at Google Scholar
  61. Q. Pu, Y. Leng, L. Tsetseris, H. S. Park, S. T. Pantelides, and P. T. Cummings, “Molecular dynamics simulations of stretched gold nanowires: the relative utility of different semiempirical potentials,” Journal of Chemical Physics, vol. 126, no. 14, Article ID 144707, 6 pages, 2007. View at Publisher · View at Google Scholar