Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2009, Article ID 168041, 5 pages
http://dx.doi.org/10.1155/2009/168041
Research Article

Antibacterial Properties of Nanosilver PLLA Fibrous Membranes

1Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
2Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
3Department of Materials Engineering, AMPEL, The University of British Columbia, Vancouver, BC, Canada
4Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong

Received 15 October 2008; Revised 13 March 2009; Accepted 24 April 2009

Academic Editor: Alan K. T. Lau

Copyright © 2009 Lin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, “Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties,” Polymer, vol. 44, no. 19, pp. 5721–5727, 2003. View at Publisher · View at Google Scholar
  2. Y. Chen, A. F. T. Mak, M. Wang, J. Li, and M. S. Wong, “PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 575–580, 2006. View at Publisher · View at Google Scholar
  3. K. E. Park, H. K. Kang, S. J. Lee, B. M. Min, and W. H. Park, “Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/Chitin blend nanofibers,” Biomacromolecules, vol. 7, no. 2, pp. 635–643, 2006. View at Publisher · View at Google Scholar
  4. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, “Regeneration of Bombyx mori silk by electrospinning—part 2: process optimization and empirical modeling using response surface methodology,” Polymer, vol. 45, no. 11, pp. 3701–3708, 2004. View at Publisher · View at Google Scholar
  5. S. Putthanarat, R. K. Eby, W. Kataphinan et al., “Electrospun Bombyx mori gland silk,” Polymer, vol. 47, no. 15, pp. 5630–5632, 2006. View at Publisher · View at Google Scholar
  6. H. K. Noh, S. W. Lee, J.-M. Kim et al., “Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts,” Biomaterials, vol. 27, no. 21, pp. 3934–3944, 2006. View at Publisher · View at Google Scholar
  7. K. Tomihata and Y. Ikada, “In vitro and in vivo degradation of films of chitin and its deacetylated derivatives,” Biomaterials, vol. 18, no. 7, pp. 567–575, 1997. View at Publisher · View at Google Scholar
  8. W.-J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 613–621, 2002. View at Publisher · View at Google Scholar
  9. W.-J. Li, R. Tuli, X. Huang, P. Laquerriere, and R. S. Tuan, “Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold,” Biomaterials, vol. 26, no. 25, pp. 5158–5166, 2005. View at Publisher · View at Google Scholar
  10. Y. Ji, K. Ghosh, X. Z. Shu et al., “Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds,” Biomaterials, vol. 27, no. 20, pp. 3782–3792, 2006. View at Publisher · View at Google Scholar
  11. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, vol. 7, no. 3, pp. 216–223, 1996. View at Publisher · View at Google Scholar
  12. M. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss, and P. I. Lelkes, “Electrospun protein fibers as matrices for tissue engineering,” Biomaterials, vol. 26, no. 30, pp. 5999–6008, 2005. View at Publisher · View at Google Scholar
  13. V. J. Chen and P. X. Ma, “The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams,” Biomaterials, vol. 27, no. 20, pp. 3708–3715, 2006. View at Publisher · View at Google Scholar
  14. X. Chen and H. J. Schluesener, “Nanosilver: a nanoproduct in medical application,” Toxicology Letters, vol. 176, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar
  15. V. Alt, T. Bechert, P. Steinrücke et al., “An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement,” Biomaterials, vol. 25, no. 18, pp. 4383–4391, 2004. View at Publisher · View at Google Scholar
  16. B. Shan, Y.-Z. Cai, J. D. Brooks, and H. Corke, “Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents,” Food Chemistry, vol. 109, no. 3, pp. 530–537, 2008. View at Publisher · View at Google Scholar
  17. Y. Li, P. Leung, L. Yao, Q. W. Song, and E. Newton, “Antimicrobial effect of surgical masks coated with nanoparticles,” Journal of Hospital Infection, vol. 62, no. 1, pp. 58–63, 2006. View at Publisher · View at Google Scholar
  18. T. A. Gaonkar, L. A. Sampath, and S. M. Modak, “Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model,” Infection Control and Hospital Epidemiology, vol. 24, no. 7, pp. 506–513, 2003. View at Publisher · View at Google Scholar
  19. B. Walder, D. Pittet, and M. R. Tramèr, “Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: evidence from a meta-analysis,” Infection Control & Hospital Epidemiology, vol. 23, no. 12, pp. 748–756, 2002. View at Publisher · View at Google Scholar
  20. N. S. Morris and D. J. Stickler, “Encrustation of indwelling urethral catheters by Proteus mirabilis biofilms growing in human urine,” Journal of Hospital Infection, vol. 39, no. 3, pp. 227–234, 1998. View at Publisher · View at Google Scholar
  21. B. Galeano, E. Korff, and W. L. Nicholson, “Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation,” Applied and Environmental Microbiology, vol. 69, no. 7, pp. 4329–4331, 2003. View at Publisher · View at Google Scholar
  22. V. Thomas, M. M. Yallapu, B. Sreedhar, and S. K. Bajpai, “A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity,” Journal of Colloid and Interface Science, vol. 315, no. 1, pp. 389–395, 2007. View at Publisher · View at Google Scholar
  23. K. K. Lai and S. A. Fontecchio, “Use of silver-hydrogel urinary catheters on the incidence of catheter-associated urinary tract infections in hospitalized patients,” American Journal of Infection Control, vol. 30, no. 4, pp. 221–225, 2002. View at Publisher · View at Google Scholar
  24. J. H. Crabtree, R. J. Burchette, R. A. Siddiqi, I. T. Huen, L. L. Hadnott, and A. Fishman, “The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections,” Peritoneal Dialysis International, vol. 23, no. 4, pp. 368–374, 2003. View at Google Scholar
  25. D. K. Riley, D. C. Classen, L. E. Stevens, and J. P. Burke, “A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection,” The American Journal of Medicine, vol. 98, no. 4, pp. 349–356, 1995. View at Publisher · View at Google Scholar
  26. F. Furno, K. S. Morley, B. Wong et al., “Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?” Journal of Antimicrobial Chemotherapy, vol. 54, no. 6, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar
  27. M. Wilson, R. McNab, and B. Henderson, Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology, Cambridge University Press, Cambridge, UK, 2002.
  28. S. Y. Yeo, H. J. Lee, and S. H. Jeong, “Preparation of nanocomposite fibers for permanent antibacterial effect,” Journal of Materials Science, vol. 38, no. 10, pp. 2143–2147, 2003. View at Publisher · View at Google Scholar
  29. J. Li, Y. Li, L. Li, A. F. T. Mak, F. Ko, and L. Qin, “Fabrication of poly(L-latic acid) scaffolds with wool keratin for osteoblast cultivation,” Advanced Materials Research, vol. 47–50, pp. 845–848, 2008. View at Publisher · View at Google Scholar
  30. M. Rai, A. Yadav, and A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, no. 1, pp. 76–83, 2009. View at Publisher · View at Google Scholar