Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2010, Article ID 679786, 8 pages
http://dx.doi.org/10.1155/2010/679786
Research Article

Thermomechanical Assessment of Plastic Deformation in Model Amorphous Polyamide/Clay Nanocomposites

1Department of Plastics Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
2Department of Mechanical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA

Received 11 January 2010; Accepted 22 March 2010

Academic Editor: Frank T. Fisher

Copyright © 2010 Kunal Tulsyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In an effort to isolate the role of nanofiller independent of changes in polymer microstructure, we report the processing and characterization of model amorphous polyamide/clay nanocomposites. Analyses confirm fully amorphous character, no change in or thermal stability, and a partially exfoliated structure. The tensile modulus, yield stress, and failure stress increase with the clay content, both in dried and conditioned samples. In contrast, failure strain decreases with increasing clay content in conditioned samples but is independent of clay content in dried samples. Concurrently, the conversion of mechanical work to heat during plastic deformation was studied using infrared thermography, with the heat of deformation estimated based on these results and compared to the work of deformation. These results allow us to quantify changes in deformation mechanism and to conclude that the presence of clay enhances the conversion of mechanical energy to heat in these materials.