Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 145963, 9 pages
http://dx.doi.org/10.1155/2011/145963
Research Article

Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna Hermosillo No. 140, 25253 Saltillo, Coah, Mexico

Received 13 August 2011; Accepted 8 September 2011

Academic Editor: Anukorn Phuruangrat

Copyright © 2011 Liliana E. Romo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, and L. L. Wen, “Growth of ZnO crystals with branched spindles and prismatic whiskers from Zn3(OH)2V2O7H2O nanosheets by a hydrothermal route,” Crystal Growth and Design, vol. 5, no. 3, pp. 935–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Tang, G. Cheng, X. Pang, X. Ma, and F. Xing, “Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property,” Colloid and Polymer Science, vol. 284, no. 4, pp. 422–428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu, “Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method,” Journal of Chemical Engineering of Japan, vol. 28, no. 3, pp. 288–293, 1995. View at Google Scholar
  4. V. Khrenov, M. Klapper, M. Koch, and K. Müllen, “Surface functionalized ZnO particles designed for the use in transparent nanocomposites,” Macromolecular Chemistry and Physics, vol. 206, no. 1, pp. 95–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. I. A. Toutorski, T. E. Tkachenko, B. V. Pokidko, N. I. Maliavski, and V. I. Sidorov, “Mechanical properties and structure of zinc-containing latex-silicate composites,” Journal of Sol-Gel Science and Technology, vol. 26, no. 1–3, pp. 505–509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Wang and M. Muhammed, “Synthesis of zinc oxide nanoparticles with controlled morphology,” Journal of Materials Chemistry, vol. 9, no. 11, pp. 2871–2878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Rodríguez-Paéz, A. C. Caballero, M. Villegas, C. Moure, P. Durán, and J. F. Fernández, “Controlled precipitation methods: formation mechanism of ZnO nanoparticles,” Journal of the European Ceramic Society, vol. 21, no. 7, pp. 925–930, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403-404, pp. 485–488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Audebrand, J. P. Auffrédic, and D. Louër, “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties,” Chemistry of Materials, vol. 10, no. 9, pp. 2450–2461, 1998. View at Google Scholar · View at Scopus
  10. Y. Yang, H. Chen, B. Zhao, and X. Bao, “Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives,” Journal of Crystal Growth, vol. 263, no. 1–4, pp. 447–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. H. Lu and C. H. Yeh, “Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder,” Ceramics International, vol. 26, no. 4, pp. 351–357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhu and Y. Zhou, “Preparation of pure ZnO nanoparticles by a simple solid-state reaction method,” Applied Physics A: Materials Science and Processing, vol. 92, no. 2, pp. 275–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Tani, L. Mädler, and S. E. Pratsinis, “Homogeneous ZnO nanoparticles by flame spray pyrolysis,” Journal of Nanoparticle Research, vol. 4, no. 4, pp. 337–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Hingorani, V. Pillai, P. Kumar, M. S. Multani, and D. O. Shah, “Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies,” Materials Research Bulletin, vol. 28, no. 12, pp. 1303–1310, 1993. View at Google Scholar · View at Scopus
  15. S. Hingorani, D. O. Shah, and M. S. Multani, “Effect of process variables on the grain growth and microstructure of ZnO-Bi2O3 varistors and their nanosize ZnO precursors,” Journal of Materials Research, vol. 10, no. 2, pp. 461–467, 1995. View at Google Scholar · View at Scopus
  16. M. Singhal, V. Chhabra, P. Kang, and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion,” Materials Research Bulletin, vol. 32, no. 2, pp. 239–247, 1997. View at Google Scholar · View at Scopus
  17. B. P. Lim, J. Wang, S. C. Ng, C. H. Chew, and L. M. Gan, “A bicontinuous microemulsion route to zinc oxide powder,” Ceramics International, vol. 24, no. 3, pp. 205–209, 1998. View at Google Scholar · View at Scopus
  18. M. Inoguchi, K. Suzuki, K. Kageyama, H. Takagi, and Y. Sakabe, “Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by microemulsion method,” Journal of the American Ceramic Society, vol. 91, no. 12, pp. 3850–3855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Nagy, Handbook of Microemulsión Science and Technology, Marcel Dekker Inc., New York, NY, USA, 1999.
  20. K. Osseo-Asare, Handbook of Microemulsión Science and Technology, Marcel Dekker Inc., New York, NY, USA, 1999.
  21. J. Esquivel, I. A. Facundo, M. E. Treviño, and R. G. López, “A novel method to prepare magnetic nanoparticles: precipitation in bicontinuous microemulsions,” Journal of Materials Science, vol. 42, no. 21, pp. 9015–9020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. L. Loo, M. G. Pineda, H. Saade, M. E. Treviño, and R. G. López, “Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration,” Journal of Materials Science, vol. 43, no. 10, pp. 3649–3654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Y. Reyes, J. A. Espinoza, M. E. Treviño, H. Saade, and R. G. López, “Synthesis of silver nanoparticles by precipitation in bicontinuous microemulsions,” Journal of Nanomaterials, vol. 2010, Article ID 948941, 7 pages, 2010. View at Publisher · View at Google Scholar
  24. S. Ezrahi, A. Aserin, and N. Garti, Handbook of Microemulsión Science and Technology, Marcel Dekker Inc., New York, NY, USA, 1999.
  25. S. López-Cuenca, M. Rabelero, H. Saade, R. G. López, E. Mendizábal, and J. E. Puig, “High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions,” Journal of Nanomaterials, vol. 2011, Article ID 431382, 6 pages, 2011. View at Publisher · View at Google Scholar
  26. H. F. Eicke, M. Borkovec, and B. Das-Gupta, “Conductivity of water-in-oil microemulsions: a quantitative charge fluctuation model,” Journal of Physical Chemistry, vol. 93, no. 1, pp. 314–317, 1989. View at Google Scholar · View at Scopus
  27. M. Borkovec, H. F. Eicke, H. Hammerich, and B. Das Gupta, “Two percolation processes in microemulsions,” Journal of physical chemistry, vol. 92, no. 1, pp. 206–211, 1988. View at Google Scholar · View at Scopus
  28. J. F. Billman and E. W. Kaler, “Structure and phase behavior in five-component microemulsions,” Langmuir, vol. 6, no. 3, pp. 611–620, 1990. View at Google Scholar · View at Scopus
  29. A. Maitra, C. Mathew, and M. Varshney, “Closed and open structure aggregates in microemulsions and mechanism of percolative conduction,” Journal of Physical Chemistry, vol. 94, no. 13, pp. 5290–5292, 1990. View at Google Scholar · View at Scopus
  30. A. V. Sineva, D. S. Ermolat'ev, and A. V. Pertsov, “Structural transformations in a water-n-octane + chloroform-sodium dodecyl sulfate-n-pentanol microemulsion,” Colloid Journal, vol. 69, no. 1, pp. 89–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. M. Gan, T. H. Chieng, C. H. Chew, and S. C. Ng, “Microporous polymeric materials from microemulsion polymerization,” Langmuir, vol. 10, no. 11, pp. 4022–4026, 1994. View at Google Scholar · View at Scopus
  32. M. Gradzielski and H. Hoffmann, Handbook of Microemulsión Science and Technology, Marcel Dekker Inc., New York, NY, USA, 1999.
  33. C. M. Chen and G. G. Warr, “Rheology of ternary microemulsions,” Journal of Physical Chemistry, vol. 96, no. 23, pp. 9492–9497, 1992. View at Google Scholar · View at Scopus
  34. M. Gusatti, J. A. Rosário, G. S. Barroso, C. E.M. Campos, H. G. Riella, and N. C. Kunhen, “Synthesis of ZnO nanostructures in low reaction temperature,” Chemical Engineering Transactions, vol. 17, pp. 1017–1021, 2009. View at Publisher · View at Google Scholar
  35. M. M. Husein and N. N. Nassar, “Nanoparticle preparation using the single microemulsions scheme,” Current Nanoscience, vol. 4, no. 4, pp. 370–380, 2008. View at Publisher · View at Google Scholar · View at Scopus