Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 152524, 7 pages
http://dx.doi.org/10.1155/2011/152524
Research Article

Controllable Assembly of Hydrophobic Superparamagnetic Iron Oxide Nanoparticle with mPEG-PLA Copolymer and Its Effect on MR Transverse Relaxation Rate

Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China

Received 2 May 2010; Revised 14 July 2010; Accepted 15 August 2010

Academic Editor: William W. Yu

Copyright © 2011 Xuan Xie and Chunfu Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Debbage and W. Jaschke, “Molecular imaging with nanoparticles: giant roles for dwarf actors,” Histochemistry and Cell Biology, vol. 130, no. 5, pp. 845–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Laurent, D. Forge, M. Port et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Corot, P. Robert, J.-M. Idée, and M. Port, “Recent advances in iron oxide nanocrystal technology for medical imaging,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1471–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-H. Lee, Y.-M. Huh, Y.-W. Jun et al., “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nature Medicine, vol. 13, no. 1, pp. 95–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. J. Carroll, R. C. Woodward, M. J. House et al., “Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents,” Nanotechnology, vol. 21, no. 3, Article ID 035103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C.P. Bean and J. D. Livingston, “Superparamagnetism,” Journal of Applied Physics, vol. 30, p. S120, 1959. View at Google Scholar
  7. J.-F. Berret, N. Schonbeck, F. Gazeau et al., “Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging,” Journal of the American Chemical Society, vol. 128, no. 5, pp. 1755–1761, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ai, C. Flask, B. Weinberg et al., “Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes,” Advanced Materials, vol. 17, no. 16, pp. 1949–1952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Riess, “Micellization of block copolymers,” Progress in Polymer Science, vol. 28, no. 7, pp. 1107–1170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Nasongkla, E. Bey, J. Ren et al., “Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems,” Nano Letters, vol. 6, no. 11, pp. 2427–2430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sun, H. Zeng, D. B. Robinson et al., “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 273–279, 2004. View at Google Scholar · View at Scopus
  12. Y. Li, X. R. Qi, Y. Maitani, and T. Nagai, “PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations,” Nanotechnology, vol. 20, no. 5, Article ID 055106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Blanco, C. W. Kessinger, B. D. Sumer, and J. Gao, “Multifunctional micellar nanomedicine for cancer therapy,” Experimental Biology and Medicine, vol. 234, no. 2, pp. 123–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Sun, D.-X. Chen, H.-C. Gu, and X.-L. Wang, “Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: waiting time dependence,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 18, pp. 2971–2975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Xu, D. Lei, and X. Du, “Modification of MR molecular imaging probes with cysteine- terminated peptides and their potential for in vivo tumour detection,” Contrast Media and Molecular Imaging. In press.
  16. A. Bumb, M. W. Brechbiel, P. L. Choyke et al., “Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica,” Nanotechnology, vol. 19, no. 33, Article ID 335601, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Roch, Y. Gossuin, R. N. Muller, and P. Gillis, “Superparamagnetic colloid suspensions: water magnetic relaxation and clustering,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 532–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D.-X. Chen, N. Sun, Z.-J. Huang, C.-M. Cheng, H. Xu, and H.-C. Gu, “Experimental study on T2 relaxation time of protons in water suspensions of iron-oxide nanoparticles: effects of polymer coating thickness and over-low 1/T2,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 5, pp. 548–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. S. M. Lee, B. Shuter, J. Chan et al., “The use of microgel iron oxide nanoparticles in studies of magnetic resonance relaxation and endothelial progenitor cell labelling,” Biomaterials, vol. 31, no. 12, pp. 3296–3306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D.-X. Chen, N. Sun, and H.-C. Gu, “Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging,” Journal of Applied Physics, vol. 106, no. 6, Article ID 063906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D.-X. Chen, A. Sanchez, E. Taboada, A. Roig, N. Sun, and H.-C. Gu, “Size determination of superparamagnetic nanoparticles from magnetization curve,” Journal of Applied Physics, vol. 105, no. 8, Article ID 083924, 2009. View at Publisher · View at Google Scholar · View at Scopus