Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 157690, 16 pages
http://dx.doi.org/10.1155/2011/157690
Review Article

Synthesis and Characterization of 1D Ceria Nanomaterials for CO Oxidation and Steam Reforming of Methanol

Department of Chemical Engineering and Materials Science and Fuel Cell Center, Yuan Ze University, Chung-Li 320, Taiwan

Received 12 June 2011; Accepted 29 July 2011

Academic Editor: Yanqiu Zhu

Copyright © 2011 Sujan Chowdhury and Kuen-Song Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Deshmukh, M. Zhang, V. I. Kovalchuk, and J. L. D'Itri, “Effect of SO2 on CO and C3H6 oxidation over CeO2 and Ce0.75Zr0.25O2 ,” Applied Catalysis B, vol. 45, no. 2, pp. 135–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Zhang, T. Cheng, Q. Hu, Z. Fang, and K. Han, “Study of the preparation and properties of CeO2 single/multiwall hollow microspheres,” Journal of Materials Research, vol. 22, no. 6, pp. 1472–1478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Y. Cui, J. X. He, N. P. Lu et al., “Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology,” Materials Chemistry and Physics, vol. 121, no. 1-2, pp. 314–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Sun, H. Zhang, G. An, G. Yang, and Z. Liu, “Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes,” Journal of Materials Chemistry, vol. 20, no. 10, pp. 1947–1952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Guo, F. Jian, and F. Du, “A simple method to controlled synthesis of CeO2 hollow microspheres,” Scripta Materialia, vol. 61, no. 1, pp. 48–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Chen, C. Xu, X. Song, S. Xu, Y. Ding, and S. Sun, “Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes,” Crystal Growth and Design, vol. 8, no. 12, pp. 4449–4453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Fornasiero, R. Dimonte, G. R. Rao et al., “Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties,” Journal of Catalysis, vol. 151, no. 1, pp. 168–177, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. R. S. Sundar and S. Deevi, “CO oxidation activity of Cu-CeO2 nano-composite catalysts prepared by laser vaporization and controlled condensation,” Journal of Nanoparticle Research, vol. 8, no. 3-4, pp. 497–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Sun, H. Li, and L. Chen, “Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction,” Journal of Physics and Chemistry of Solids, vol. 68, no. 9, pp. 1785–1790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Mai, D. Zhang, L. Shi, T. Yan, and H. Li, “Highly active Ce1-xCuxO2 nanocomposite catalysts for the low temperature oxidation of CO,” Applied Surface Science, vol. 257, no. 17, pp. 7551–7559, 2011. View at Publisher · View at Google Scholar
  11. D. Zhang, H. Mai, L. Huang, and L. Shi, “Pyridine-thermal synthesis and high catalytic activity of CeO2/CuO/CNT nanocomposites,” Applied Surface Science, vol. 256, no. 22, pp. 6795–6800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. S. Lin and S. Chowdhury, “Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review,” International Journal of Molecular Sciences, vol. 11, no. 9, pp. 3226–3251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Niu, D. Zhang, L. Shi et al., “Facile synthesis, characterization and low-temperature catalytic performance of Au/CeO2 nanorods,” Materials Letters, vol. 63, no. 24-25, pp. 2132–2135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sun, H. Li, H. Zhang, Z. Wang, and L. Chen, “Controlled synthesis of CeO2 nanorods by a solvothermal method,” Nanotechnology, vol. 16, no. 9, pp. 1454–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Ho, J. C. Yu, T. Kwong, A. C. Mak, and S. Lai, “Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures,” Chemistry of Materials, vol. 17, no. 17, pp. 4514–4522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Tang, L. Zhuo, J. Ge, G. Wang, Z. Shi, and J. Niu, “A surfactant-free route to single-crystalline CeO2 nanowires,” Chemical Communications, no. 28, pp. 3565–3567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Vantomme, Z. Y. Yuan, G. Du, and B. L. Su, “Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods,” Langmuir, vol. 21, no. 3, pp. 1132–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Pan, D. Zhang, and L. Shi, “CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods,” Journal of Solid State Chemistry, vol. 181, no. 6, pp. 1298–1306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Zhou, X. Wang, X. Sun, Q. Peng, and Y. Li, “Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes,” Journal of Catalysis, vol. 229, no. 1, pp. 206–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. X. Huang, F. Wu, B. L. Zhu et al., “CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst,” Journal of Physical Chemistry B, vol. 109, no. 41, pp. 19169–19174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. X. Mai, L. D. Sun, Y. W. Zhang et al., “Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes,” Journal of Physical Chemistry B, vol. 109, no. 51, pp. 24380–24385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Qi, Y. J. Zhu, G. F. Cheng, and Y. H. Huang, “Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods,” Nanotechnology, vol. 16, no. 11, pp. 2502–2506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. E. Zhang, X. M. Ni, H. G. Zheng, X. J. Zhang, and J. M. Song, “Fabrication of rod-like CeO2: characterization, optical and electrochemical properties,” Solid State Sciences, vol. 8, no. 11, pp. 1290–1293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Zhang, H. Fu, L. Shi et al., “Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol,” Inorganic Chemistry, vol. 46, no. 7, pp. 2446–2451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Gao, Q. Lu, and S. Komarneni, “Fast synthesis of cerium oxide nanoparticles and nanorods,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 12, pp. 3812–3819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Cui, X. Dong, J. Wang, and M. Li, “Direct fabrication of cerium oxide hollow nanofibers by electrospinning,” Journal of Rare Earths, vol. 26, no. 5, pp. 664–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Gu, Z. Wang, D. Han, C. Shi, and G. Guo, “Reverse micelles directed synthesis of mesoporous ceria nanostructures,” Materials Science and Engineering B, vol. 139, no. 1, pp. 62–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. La, Z. A. Hu, H. L. Li, X. L. Shang, and Y. Y. Yang, “Template synthesis of CeO2 ordered nanowire arrays,” Materials Science and Engineering A, vol. 368, no. 1-2, pp. 145–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C. Schulz, and G. D. Will, “Modification of TiO2 for enhanced surface properties: finite ostwald ripening by a microwave hydrothermal process,” Langmuir, vol. 22, no. 5, pp. 2016–2027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Halder, “Determination of the critical micellar concentration (CMC) of a cationic micelle from stokes shift data,” The Chemical Educator, vol. 12, no. 1, pp. 33–36, 2007. View at Google Scholar
  31. R. J. Hunter, Fundamentals of Colloid Science, vol. 1-2, Clarendon, Oxford, UK, 1989.
  32. C. Pan, D. Zhang, L. Shi, and J. Fang, “Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes,” European Journal of Inorganic Chemistry, no. 15, pp. 2429–2436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Yang and L. Gao, “Controlled synthesis and self-assembly of CeO2 nanocubes,” Journal of the American Chemical Society, vol. 128, no. 29, pp. 9330–9331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. P. W. Atkins, Physical Chemistry, Freeman, 1998.
  35. K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems, 1987.
  36. D. Terribile, A. Trovarelli, J. Llorca, C. De Leitenburg, and G. Dolcetti, “The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route,” Journal of Catalysis, vol. 178, no. 1, pp. 299–308, 1998. View at Google Scholar · View at Scopus
  37. M. Yada, S. Sakai, T. Torikai, T. Watari, S. Furuta, and H. Katsuki, “Cerium compound nanowires and nanorings templated by mixed organic molecules,” Advanced Materials, vol. 16, no. 14, pp. 1222–1226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Sun, H. Li, Z. Wang, L. Chen, and X. Huang, “Synthesis and characterization of polycrystalline CeO2 nanowires,” Chemistry Letters, vol. 33, no. 6, pp. 662–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Yan, X. Xing, R. Yu, J. Deng, J. Chen, and G. Liu, “Facile alcohothermal synthesis of large-scale ceria nanowires with organic surfactant assistance,” Physica B, vol. 390, no. 1-2, pp. 59–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Yang and L. Guo, “Synthesis of cubic fluorite CeO nanowires,” Journal of Materials Science, vol. 40, pp. 1305–1307, 2005. View at Google Scholar
  41. D. Zhang, L. Huang, J. Zhang, and L. Shi, “Facile synthesis of ceria rhombic microplates,” Journal of Materials Science, vol. 43, no. 16, pp. 5647–5650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Guo, F. Du, G. Li, and Z. Cui, “Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates,” Inorganic Chemistry, vol. 45, no. 10, pp. 4167–4169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, and E. Longo, “Preparation of CeO2 by a simple microwave-hydrothermal method,” Solid State Ionics, vol. 180, no. 2-3, pp. 288–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Ikuma, H. Oosawa, E. Shimada, and M. Kamiya, “Effect of microwave radiation on the formation of Ce2O(CO3)2·H2O in aqueous solution,” Solid State Ionics, vol. 151, no. 1–4, pp. 347–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Komarneni, Q. H. Li, and R. Roy, “Microwave-hydrothermal processing for synthesis of layered and network phosphates,” Journal of Materials Chemistry, vol. 4, no. 12, pp. 1903–1906, 1994. View at Google Scholar · View at Scopus
  46. S. Komarneni, R. Pidugu, Q. H. Li, and R. Roy, “Microwave-hydrothermal processing of metal powders,” Journal of Materials Research, vol. 10, no. 7, pp. 1687–1692, 1995. View at Google Scholar · View at Scopus
  47. S. Komarneni, R. Roy, and Q. H. Li, “Microwave-hydrothermal synthesis of ceramic powders,” Materials Research Bulletin, vol. 27, no. 12, pp. 1393–1405, 1992. View at Google Scholar · View at Scopus
  48. C. H. Lu and H. C. Wang, “Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process,” Materials Science and Engineering B, vol. 90, no. 1-2, pp. 138–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Tao, F. H. Gong, H. Wang, H. P. Wu, and G. L. Tao, “Microwave-assisted preparation of cerium dioxide nanocubes,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 973–976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Yang and L. Guo, “Synthesis of the nanotublar cubic fluorite CeO2,” Chinese Journal of Inorganic Chemistry, vol. 20, no. 2, pp. 152–158, 2004. View at Google Scholar · View at Scopus
  51. S. C. Kuiry, S. D. Patil, S. Deshpande, and S. Seal, “Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation,” Journal of Physical Chemistry B, vol. 109, no. 15, pp. 6936–6939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Lundberg, B. Skårman, F. Cesar, and L. Reine Wallenberg, “Mesoporous thin films of high-surface-area crystalline cerium dioxide,” Microporous and Mesoporous Materials, vol. 54, no. 1-2, pp. 97–103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. H. Son, S. W. Kim, D. S. Bae et al., “Synthesis and characterization of CeO2-doped SiO2 nanoparticles by a reverse micelle and sol-gel processing,” Materials Science and Engineering A, vol. 498, no. 1-2, pp. 2–4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Qian, J. Zhu, W. Du, and X. Qian, “Solvothermal synthesis, electrochemical and photocatalytic properties of monodispersed CeO2 nanocubes,” Materials Chemistry and Physics, vol. 115, no. 2-3, pp. 835–840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Bouchara, G. J. D. A. A. Soler-Illia, J. Y. Chane-Ching, and C. Sanchez, “Nanotectonic approach of the texturation of CeO2 based nanomaterials,” Chemical Communications, no. 11, pp. 1234–1235, 2002. View at Google Scholar · View at Scopus
  56. X. Y. Zhang, T. W. Wang, W. Q. Jiang, D. Wu, L. Liu, and A. H. Duan, “Preparation and characterization of three-dimensionally ordered crystalline macroporous CeO2,” Chinese Chemical Letters, vol. 16, no. 8, pp. 1109–1112, 2005. View at Google Scholar · View at Scopus
  57. D. Andreescu, E. Matijević, and D. V. Goia, “Formation of uniform colloidal ceria in polyol,” Colloids and Surfaces A, vol. 291, no. 1–3, pp. 93–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Uekawa, M. Ueta, Y. J. Wu, and K. Kakegawa, “Synthesis of CeO2 spherical fine particles by homogeneous precipitation method with polyethylene glycol,” Chemistry Letters, no. 8, pp. 854–855, 2002. View at Google Scholar · View at Scopus
  59. N. Uekawa, M. Ueta, Y. J. Wu, and K. Kakegawa, “Characterization of CeO2 fine particles prepared by the homogeneous precipitation method with a mixed solution of ethylene glycol and polyethylene glycol,” Journal of Materials Research, vol. 19, no. 4, pp. 1087–1092, 2004. View at Google Scholar · View at Scopus
  60. Z. Yang, L. Liu, H. Liang, H. Yang, and Y. Yang, “One-pot hydrothermal synthesis of CeO2 hollow microspheres,” Journal of Crystal Growth, vol. 312, no. 3, pp. 426–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Herrmann, C. Hoang-Van, L. Dibansa, and R. Harivololona, “An in situ electrical conductivity study of a CeO2 aerogel supported palladium catalyst in correlation with the total oxidation of propane,” Journal of Catalysis, vol. 159, no. 2, pp. 361–367, 1996. View at Google Scholar · View at Scopus
  62. C. Laberty-Robert, J. W. Long, E. M. Lucas et al., “Sol-gel-derived ceria nanoarchitectures: synthesis, characterization, and electrical properties,” Chemistry of Materials, vol. 18, no. 1, pp. 50–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Gasser-Ramirez, B. C. Dunn, D. W. Ramirez et al., “A simple synthesis of catalytically active, high surface area ceria aerogels,” Journal of Non-Crystalline Solids, vol. 354, no. 52–54, pp. 5509–5514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. R. O. Fuentes, L. M. Acuña, M. G. Zimicz et al., “Formation and structural properties of Ce-Zr mixed oxide nanotubes,” Chemistry of Materials, vol. 20, no. 23, pp. 7356–7363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Chen, S. Sun, X. Sun, W. Fan, and T. You, “Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through kirkendall diffusion,” Inorganic Chemistry, vol. 48, no. 4, pp. 1334–1338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Zhang, H. Fu, L. Shi, J. Fang, and Q. Li, “Carbon nanotube assisted synthesis of CeO2 nanotubes,” Journal of Solid State Chemistry, vol. 180, no. 2, pp. 654–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Fang, Z. Cao, D. Zhang, X. Shen, W. Ding, and L. Shi, “Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method,” Journal of Rare Earths, vol. 26, no. 2, pp. 153–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Zhang, C. Pan, J. Zhang, and L. Shi, “Solvothermal synthesis of necklace-like carbon nanotube/ceria composites,” Materials Letters, vol. 62, no. 23, pp. 3821–3823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Li, J. Ding, J. Chen et al., “Preparation of ceria nanoparticles supported on carbon nanotubes,” Materials Research Bulletin, vol. 37, no. 2, pp. 313–318, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Wei, J. Ding, X. Zhang et al., “Coated double-walled carbon nanotubes with ceria nanoparticles,” Materials Letters, vol. 59, no. 2-3, pp. 322–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Zhang, L. Shi, H. Fu, and J. Fang, “Ultrasonic-assisted preparation of carbon nanotube/cerium oxide composites,” Carbon, vol. 44, no. 13, pp. 2853–2855, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. H. X. Fu, D. S. Zhang, L. Y. Shi, and J. H. Fang, “Synthesis and characterization of cerium oxide nanotubes based on carbon nanotubes,” Gaodeng Xuexiao Huaxue Xuebao, vol. 28, no. 4, pp. 617–620, 2007. View at Google Scholar · View at Scopus
  73. D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, and H. Fu, “A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates,” Microporous and Mesoporous Materials, vol. 117, no. 1-2, pp. 193–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Zhang, T. Yan, L. Shi, C. Pan, and J. Zhang, “Ethylene glycol reflux synthesis of carbon nanotube/ceria core-shell nanowires,” Applied Surface Science, vol. 255, no. 11, pp. 5789–5794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. S. C. Laha and R. Ryoo, “Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates,” Chemical Communications, vol. 9, no. 17, pp. 2138–2139, 2003. View at Google Scholar · View at Scopus
  76. W. Shen, X. Dong, Y. Zhu, H. Chen, and J. Shi, “Mesoporous CeO2 and CuO-loaded mesoporous CeO2: synthesis, characterization, and CO catalytic oxidation property,” Microporous and Mesoporous Materials, vol. 85, no. 1-2, pp. 157–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. I. A. Kartsonakis, P. Liatsi, I. Daniilidis, and G. Kordas, “Synthesis, characterization, and antibacterial action of hollow ceria nanospheres with/without a conductive polymer coating,” Journal of the American Ceramic Society, vol. 91, no. 2, pp. 372–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Kartsonakis, I. Daniilidis, and G. Kordas, “Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into ceria nanocontainers,” Journal of Sol-Gel Science and Technology, vol. 48, no. 1, pp. 24–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. G. S. Wu, T. Xie, X. Y. Yuan, B. C. Cheng, and L. D. Zhang, “An improved sol-gel template synthetic route to large-scale CeO2 nanowires,” Materials Research Bulletin, vol. 39, no. 7-8, pp. 1023–1028, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. D. E. Zhang, X. J. Zhang, X. M. Ni, J. M. Song, and H. G. Zheng, “Optical and electrochemical properties of CeO2 spindles,” ChemPhysChem, vol. 7, no. 12, pp. 2468–2470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Hirano and E. Kato, “Hydrothermal synthesis of two types of cerium carbonate particles,” Journal of Materials Science Letters, vol. 18, no. 5, pp. 403–405, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. H. C. Wang and C. H. Lu, “Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique,” Materials Research Bulletin, vol. 37, no. 4, pp. 783–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Ge, C. Guo, L. Li, B. Zhang, Y. Feng, and Y. Wang, “Preparation of CeO2 novel sponge-like rods by emulsion liquid membrane system and its catalytic oxidation property,” Materials Letters, vol. 63, no. 15, pp. 1269–1271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. G. Macedo, S. E. M. Fernandes, A. A. Valente, R. A. S. Ferreira, L. D. Carlos, and J. Rocha, “Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide,” Molecules, vol. 15, no. 2, pp. 747–765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. X. He, D. Zhang, H. Li, J. Fang, and L. Shi, “Shape and size effects of ceria nanoparticles on the impact strength of ceria/epoxy resin composites,” Particuology, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. J. J. Miao, H. Wang, Y. R. Li, J. M. Zhu, and J. J. Zhu, “Ultrasonic-induced synthesis of CeO2 nanotubes,” Journal of Crystal Growth, vol. 281, no. 2–4, pp. 525–529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. M. L. Dos Santos, R. C. Lima, C. S. Riccardi et al., “Preparation and characterization of ceria nanospheres by microwave-hydrothermal method,” Materials Letters, vol. 62, no. 30, pp. 4509–4511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Q. Han, L. Wu, and Y. Zhu, “Formation and oxidation state of CeO2x nanotubes,” Journal of the American Chemical Society, vol. 127, no. 37, pp. 12814–12815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Tang, Y. Bando, B. Liu, and D. Golberg, “Cerium oxide nanotubes prepared from cerium hydroxide nanotubes,” Advanced Materials, vol. 17, no. 24, pp. 3005–3009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Chen, C. Xu, X. Song, W. Zhao, Y. Ding, and S. Sun, “Interface reaction route to two different kinds of CeO2 nanotubes,” Inorganic Chemistry, vol. 47, no. 2, pp. 723–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Wang, J. Y. Howe, Y. Li et al., “A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies,” Journal of Materials Chemistry, vol. 20, no. 36, pp. 7776–7781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Zhou, Z. Yang, and S. Yang, “Highly reducible CeO2 nanotubes,” Chemistry of Materials, vol. 19, no. 6, pp. 1215–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. Z. L. Wang and X. Feng, “Polyhedral shapes of CeO2 nanoparticles,” Journal of Physical Chemistry B, vol. 107, no. 49, pp. 13563–13566, 2003. View at Google Scholar · View at Scopus
  94. Y. C. Chen, K. B. Chen, C. S. Lee, and M. C. Lin, “Direct synthesis of Zr-doped ceria nanotubes,” Journal of Physical Chemistry C, vol. 113, no. 13, pp. 5031–5034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Martin, S. C. Parker, D. C. Sayle, and G. W. Watson, “Atomistic modeling of multilayered ceria nanotubes,” Nano Letters, vol. 7, no. 3, pp. 543–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Fu, Z. D. Wei, M. B. Ji, L. Li, P. K. Shen, and J. Zhang, “Morphology-controllable synthesis of CeO2 on a Pt electrode,” Nanoscale Research Letters, vol. 3, no. 11, pp. 431–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Bugayeva and J. Robinson, “Synthesis of hydrated CeO2 nanowires and nanoneedles,” Materials Science and Technology, vol. 23, no. 2, pp. 237–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. K. S. Lin, S. Chowdhury, H. P. Yeh, W. T. Hong, and C. T. Yeh, “Preparation and characterization of CuO/ZnO-Al2O3 catalyst washcoats with CeO2 sols for autothermal reforming of methanol in a microreactor,” Catalysis Today, vol. 164, no. 1, pp. 251–256, 2011. View at Publisher · View at Google Scholar
  99. D. Zhang, T. Yan, C. Pan, L. Shi, and J. Zhang, “Carbon nanotube-assisted synthesis and high catalytic activity of CeO2 hollow nanobeads,” Materials Chemistry and Physics, vol. 113, no. 2-3, pp. 527–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Masui, K. Fujiwara, K. I. Machida, G. Y. Adachi, T. Sakata, and H. Mori, “Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles,” Chemistry of Materials, vol. 9, no. 10, pp. 2197–2204, 1997. View at Google Scholar · View at Scopus
  101. D. Zhang, F. Niu, H. Li, L. Shi, and J. Fang, “Uniform ceria nanospheres: solvothermal synthesis, formation mechanism, size-control and catalytic activity,” Powder Technology, vol. 207, no. 1–3, pp. 35–41, 2011. View at Publisher · View at Google Scholar
  102. D. Zhang, F. Niu, T. Yan, L. Shi, X. Du, and J. Fang, “Ceria nanospindles: template-free solvothermal synthesis and shape-dependent catalytic activity,” Applied Surface Science, vol. 257, no. 23, pp. 10161–10167, 2011. View at Publisher · View at Google Scholar
  103. J. Guzman, S. Carrettin, and A. Corma, “Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3286–3287, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. M. B. Boucher, S. Goergen, N. Yi, and M. Flytzani-Stephanopoulos, “‘Shape effects’ in metal oxide supported nanoscale gold catalysts,” Physical Chemistry Chemical Physics, vol. 13, no. 7, pp. 2517–2527, 2011. View at Publisher · View at Google Scholar
  105. K. S. Lin, C. Y. Pan, S. Chowdhury, M. T. Tu, W. T. Hong, and C. T. Yeh, “Hydrogen generation using a CuO/ZnO-ZrO2 nanocatalyst for autothermal reforming of methanol in a microchannel reactor,” Molecules, vol. 16, no. 1, pp. 348–366, 2011. View at Publisher · View at Google Scholar
  106. Y. Liu, T. Hayakawa, K. Suzuki, and S. Hamakawa, “Production of hydrogen by steam reforming of methanol over Cu/CeO2 catalysts derived from Ce1-xCuxO2-x precursors,” Catalysis Communications, vol. 2, no. 6-7, pp. 195–200, 2001. View at Google Scholar · View at Scopus
  107. D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park, and C. S. Kim, “Development of a micro fuel processor for PEMFCs,” Electrochimica Acta, vol. 50, no. 2-3, pp. 719–723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. M. B. Boucher, N. Yi, F. Gittleson, B. Zugic, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Hydrogen production from methanol over gold supported on ZnO and CeO2 nanoshapes,” Journal of Physical Chemistry C, vol. 115, no. 4, pp. 1261–1268, 2011. View at Publisher · View at Google Scholar
  109. N. Yi, R. Si, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Steam reforming of methanol over ceria and gold-ceria nanoshapes,” Applied Catalysis B, vol. 95, no. 1-2, pp. 87–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Avgouropoulos, J. Papavasiliou, and T. Ioannides, “Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts,” Chemical Engineering Journal, vol. 154, no. 1–3, pp. 274–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Yi, R. Si, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions,” Energy and Environmental Science, vol. 3, no. 6, pp. 831–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. X. Yu, S. T. Tu, Z. Wang, and Y. Qi, “Development of a microchannel reactor concerning steam reforming of methanol,” Chemical Engineering Journal, vol. 116, no. 2, pp. 123–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. P. J. De Wild and M. J. F. M. Verhaak, “Catalytic production of hydrogen from methanol,” Catalysis Today, vol. 60, no. 1, pp. 3–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. X. Yu, S. T. Tu, Z. Wang, and Y. Qi, “On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor,” Journal of Power Sources, vol. 150, no. 1-2, pp. 57–66, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Kim, D. H. Lee, D. E. Park, and S. Kwon, “Micromachined methanol reformer for portable PEM fuel cells,” Journal of Fuel Cell Science and Technology, vol. 5, no. 1, Article ID 011008, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Horny, A. Renken, and L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production,” Catalysis Today, vol. 120, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Germani, A. Stefanescu, Y. Schuurman, and A. C. van Veen, “Preparation and characterization of porous alumina-based catalyst coatings in microchannels,” Chemical Engineering Science, vol. 62, no. 18–20, pp. 5084–5091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. C. G. MacIel, L. P. R. Profeti, E. M. Assaf, and J. M. Assaf, “Hydrogen purification for fuel cell using CuO/CeO2-Al2O3 catalyst,” Journal of Power Sources, vol. 196, no. 2, pp. 747–753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Avgouropoulos and T. Ioannides, “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method,” Applied Catalysis A, vol. 244, no. 1, pp. 155–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. G. G. Park, S. D. Yim, Y. G. Yoon, C. S. Kim, D. J. Seo, and K. Eguchi, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,” Catalysis Today, vol. 110, no. 1-2, pp. 108–113, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. D. E. Park, T. Kim, S. Kwon, C. K. Kim, and E. Yoon, “Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sensors and Actuators A, vol. 135, no. 1, pp. 58–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Qi, B. Peppley, and K. Karan, “Integrated fuel processors for fuel cell application: a review,” Fuel Processing Technology, vol. 88, no. 1, pp. 3–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. S. Lim, M. R. Kim, J. Noh, and S. I. Woo, “A plate-type reactor coated with zirconia-sol and catalyst mixture for methanol steam-reforming,” Journal of Power Sources, vol. 140, no. 1, pp. 66–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Huang, B. J. Liaw, C. J. Jhang, and Y. Z. Chen, “Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts,” Applied Catalysis A, vol. 358, no. 1, pp. 7–12, 2009. View at Publisher · View at Google Scholar · View at Scopus