Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 380286, 6 pages
http://dx.doi.org/10.1155/2011/380286
Research Article

Size Dependence of the Nonlinear Elastic Softening of Nanoscale Graphene Monolayers under Plane-Strain Bulge Tests: A Molecular Dynamics Study

1Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071, USA
2Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA

Received 28 May 2010; Accepted 19 October 2010

Academic Editor: Sulin Zhang

Copyright © 2011 Sukky Jun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Vlassak and W. D. Nix, “New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films,” Journal of Materials Research, vol. 7, no. 12, pp. 3242–3249, 1992. View at Google Scholar · View at Scopus
  2. J. S. Bunch, S. S. Verbridge, J. S. Alden et al., “Impermeable atomic membranes from graphene sheets,” Nano Letters, vol. 8, no. 8, pp. 2458–2462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Szlufarska, “Atomistic simulations of nanoindentation,” Materials Today, vol. 9, no. 5, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor, and Y.-L. Shen, “Indentation across size scales and disciplines: recent developments in experimentation and modeling,” Acta Materialia, vol. 55, no. 12, pp. 4015–4039, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Wang, K. Mylvaganam, and L. C. Zhang, “Wrinkling of monolayer graphene: a study by molecular dynamics and continuum plate theory,” Physical Review B, vol. 80, no. 15, Article ID 155445, 2009. View at Publisher · View at Google Scholar
  7. S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, vol. 81, no. 1, pp. 511–519, 1984. View at Google Scholar
  8. W. G. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Physical Review A, vol. 31, no. 3, pp. 1695–1697, 1985. View at Publisher · View at Google Scholar · View at Scopus
  9. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” Journal of Physics Condensed Matter, vol. 14, no. 4, pp. 783–802, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. “LAMMPS Users Manual,” http://lammps.sandia.gov/.
  11. O. V. Pupysheva, A. A. Farajian, and B. I. Yakobson, “Fullerene nanocage capacity for hydrogen storage,” Nano Letters, vol. 8, no. 3, pp. 767–774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Liu, P. Ming, and J. Li, “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Physical Review B, vol. 76, no. 6, Article ID 064120, 2007. View at Publisher · View at Google Scholar