Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 428172, 5 pages
http://dx.doi.org/10.1155/2011/428172
Research Article

Synthesis of Vertically Aligned Dense ZnO Nanowires

1College of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
2College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China

Received 1 April 2010; Revised 26 May 2010; Accepted 23 June 2010

Academic Editor: Quanqin Dai

Copyright © 2011 Lihong Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Cheng, J. Zhao, W. Song et al., “Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries,” Inorganic Chemistry, vol. 45, no. 5, pp. 2038–2044, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Wan, Q. H. Li, Y. J. Chen et al., “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Applied Physics Letters, vol. 84, no. 18, pp. 3654–3656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, no. 4, pp. 1025–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Chen, X. Wu, L. Gong, C. Ye, F. Qu, and G. Shen, “Hydrothermally grown ZnO micro/nanotube arrays and their properties,” Nanoscale Research Letters, vol. 5, no. 3, pp. 570–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 243–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wu, P. Jiang, W. Cai, X.-D. Bai, P. Gao, and S.-S. Xie, “Hierarchical ZnO micro-/nano-structure film,” Advanced Engineering Materials, vol. 10, no. 5, pp. 476–481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhou, P. Fei, Y. Gao et al., “Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires,” Nano Letters, vol. 8, no. 9, pp. 2725–2730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Wu, J. Sui, W. Cai, and F. Qu, “Growth of dendritic SnO2 nanoarchitectures,” Materials Chemistry and Physics, vol. 112, no. 2, pp. 325–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Jiang, J.-J. Zhou, H.-F. Fang, C.-Y. Wang, Z. L. Wang, and S.-S. Xie, “Hierarchical shelled ZnO structures made of bunched nanowire arrays,” Advanced Functional Materials, vol. 17, no. 8, pp. 1303–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sun, G. Meng, G. Zhang, J.-P. Masse, and L. Zhang, “Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process,” Chemistry, vol. 13, no. 32, pp. 9087–9092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Z.-J. Li, Z. Qin, Z.-H. Zhou, L.-Y. Zhang, and Y.-F. Zhang, “SnO2 nanowire arrays and electrical properties synthesized by fast heating a mixture of SnO2 and CNTs waste soot,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1434–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Z. Shen, Y. Bando, J. Q. Hu, and D. Golberg, “High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays,” Applied Physics Letters, vol. 90, no. 12, Article ID 123101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Liu, P. Fei, J. Zhou, R. Tummala, and Z. L. Wang, “Toward high output-power nanogenerator,” Applied Physics Letters, vol. 92, no. 17, Article ID 173105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y.-F. Lin, J. Song, Y. Ding, S.-Y. Lu, and Z. L. Wang, “Piezoelectric nanogenerator using CdS nanowires,” Applied Physics Letters, vol. 92, no. 2, Article ID 022105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. L. Wang, “Towards self-powered nanosystems: from nanogenerators to nanopiezotronics,” Advanced Functional Materials, vol. 18, no. 22, pp. 3553–3567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mathur and S. Barth, “Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures,” Small, vol. 3, no. 12, pp. 2070–2075, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, “Lasing in ZnS nanowires grown on anodic aluminum oxide templates,” Applied Physics Letters, vol. 85, no. 12, pp. 2361–2363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Li, S. Yang, and Y. Du, “Strongly luminescent Cr-doped alumina nanofibres,” Nanotechnology, vol. 16, no. 4, pp. 365–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-H. Yu, B. Liu, M.-S. Mo, J.-H. Huang, X.-M. Liu, and Y.-T. Qian, “General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach,” Advanced Functional Materials, vol. 13, no. 8, pp. 639–647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. X. P. Gao, Z. F. Zheng, H. Y. Zhu et al., “Rotor-like ZnO by epitaxial growth under hydrothermal conditions,” Chemical Communications, no. 12, pp. 1428–1429, 2004. View at Google Scholar · View at Scopus
  21. Y. J. Chen, X. Y. Xue, Y. G. Wang, and T. H. Wang, “Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods,” Applied Physics Letters, vol. 87, no. 23, Article ID 233503, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947–1949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Shen, Y. Bando, B. Liu, D. Golberg, and C.-J. Lee, “Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process,” Advanced Functional Materials, vol. 16, no. 3, pp. 410–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Wu, J. Sui, and W. Cai, “Preparation and characterization of semiconductor ZnO submicron nails,” Rare Metal Materials and Engineering, vol. 37, no. 3, pp. 547–550, 2008. View at Google Scholar · View at Scopus
  26. X. Wu, F. Qu, X. Zhang, W. Cai, and G. Shen, “Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. L13–L16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Wu, W. Cai, and F.-Y. Qu, “Spontaneous formation of single crystal ZnO nanohelices,” Chinese Physics B, vol. 18, no. 4, pp. 1669–1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T.-J. Hsueh, S.-J. Chang, Y.-R. Lin, S.-Y. Tsai, I.-C. Chen, and C.-L. Hsu, “A novel method for the formation of ladder-like ZnO nanowires,” Crystal Growth and Design, vol. 6, no. 6, pp. 1282–1284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Materials science: conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science, vol. 309, no. 5741, pp. 1700–1704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Xu, K. Yu, Q. Li, Z. Zhu, and T. Yao, “Two-dimensional growth and field emission properties of ZnO microtowers,” Journal of Physical Chemistry C, vol. 111, no. 11, pp. 4099–4104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wu, P. Jiang, Y. Ding, W. Cai, S.-S. Xie, and Z. L. Wang, “Mismatch strain induced formation of ZnO/ZnS heterostructured rings,” Advanced Materials, vol. 19, no. 17, pp. 2319–2323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Gu, M. P. Paranthaman, J. Xu, and Z. W. Pan, “Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method,” ACS Nano, vol. 3, no. 2, pp. 273–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Li, M. Xia, G. Dai et al., “Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions,” Journal of Physical Chemistry C, vol. 112, no. 45, pp. 17546–17553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Yang, Y. Song, L. Li et al., “Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system,” Crystal Growth and Design, vol. 8, no. 3, pp. 1039–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Zhang, X. Zhang, H. Li, Z. Qu, S. Fan, and M. Ji, “Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion,” Crystal Growth and Design, vol. 7, no. 4, pp. 820–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Z. Wang, Y. Wang, M. Y. Yau, C. Y. To, C. J. Deng, and D. H. L. Ng, “Synthesis of ZnO hexagonal columnar pins by chemical vapor deposition,” Materials Letters, vol. 59, no. 29-30, pp. 3870–3875, 2005. View at Publisher · View at Google Scholar · View at Scopus