Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 484589, 7 pages
Research Article

Efficient In Vitro TRAIL-Gene Delivery in Drug-Resistant A2780/DDP Ovarian Cancer Cell Line via Magnetofection

1Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
2The Institute for Advanced Materials and Nanobiomedicine, Tongji University, Shanghai 200092, China
3Department of Radiology, Huangpu District Central Hospital, Shanghai 200002, China
4School of Electronic and Computing Systems 493 Rhodes Hall, University of Cincinnati, Cincinnati, OH 45221-0012, USA

Received 29 April 2011; Accepted 14 June 2011

Academic Editor: Daxiang Cui

Copyright © 2011 Fang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) presents great promise as an anticancer agent for human cancer therapy. In this study, a magnetofection agent (polyMAG-l000) was evaluated for in vitro delivery of TRAIL gene towards drug-resistant A2780/DDP ovarian cancer cells. Transfection experiments showed that polyMAG-l000 was able to transfect A2780/DDP cells in vitro, leading to a higher level of TRAIL gene expression in the presence of a static magnetic field as compared to other transfection agent, such as Lipofectamine 2000. TRAIL gene expression in the A2780/DDP cells was also confirmed by Western blot analysis. Moreover, the TRAIL gene expression exhibited remarkable decrease in the cell viability, as determined by MTT assay. Importantly, PolyMAG-l000-mediated TRAIL gene transfection in the presence of anticancer drug cisplatin (CDDP) induced much higher percentages of apoptotic A2780/DDP cells, compared to TRAIL gene transfection or CDDP treatment alone. A further study by Western blot analysis indicated that cytochrome c release and caspase-9 cleavage pathway were associated with the initiation of the apoptosis in A2780/DDP cells. The results of this study indicate that polyMAG-l000 can be used as an efficient agent for TRAIL gene transfection in ovarian cancer cells.