Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 518706, 7 pages
Research Article

Surface Effects on the Vibration and Buckling of Double-Nanobeam-Systems

Department of Engineering Mechanics, SVL, Xi'an Jiaotong University, Xi'an 710049, China

Received 13 June 2011; Accepted 18 August 2011

Academic Editor: Raymond Whitby

Copyright © 2011 Dong-Hui Wang and Gang-Feng Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Surface effects on the transverse vibration and axial buckling of double-nanobeam-system (DNBS) are examined based on a refined Euler-Bernoulli beam model. For three typical deformation modes of DNBS, we derive the natural frequency and critical axial load accounting for both surface elasticity and residual surface tension, respectively. It is found that surface effects get quite important when the cross-sectional size of beams shrinks to nanometers. No matter for vibration or axial buckling, surface effects are just the same in three deformation modes and usually enhance the natural frequency and critical load. However, the interaction between beams is clearly distinct in different deformation modes. This study might be helpful for the design of nano-optomechanical systems and nanoelectromechanical systems.