Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 573687, 13 pages
http://dx.doi.org/10.1155/2011/573687
Review Article

Preparation, Modification, and Application of Starch Nanocrystals in Nanomaterials: A Review

1College of Chemical Engineering, Wuhan University of Technology, 122 Loushi Road, Wuhan 430070, China
2Interdisciplinary Science and Technology Institute for Advanced Study, East China Normal University, Shanghai 200062, China
3State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
4Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2
5Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9

Received 4 May 2010; Accepted 12 July 2010

Academic Editor: Quanqin Dai

Copyright © 2011 Ning Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Paris, H. Bizot, J. Emery, J. Y. Buzaré, and A. Buléon, “Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy. 1: spectral decomposition,” Carbohydrate Polymers, vol. 39, no. 4, pp. 327–339, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Jenkins, R. E. Comerson, A. M. Donald et al., “In situ simultaneous small and wide angle X-ray scattering: a new technique to study starch gelatinization,” Journal of Polymer Science B, vol. 32, no. 8, pp. 1579–1583, 1994. View at Google Scholar
  3. T. A. Waigh, I. Hopkinson, A. M. Donald, M. F. Butler, F. Heidelbach, and C. Riekel, “Analysis of the native structure of starch granules with X-ray microfocus diffraction,” Macromolecules, vol. 30, no. 13, pp. 3813–3820, 1997. View at Google Scholar · View at Scopus
  4. T. A. Waigh, A. M. Donald, F. Heidelbach, C. Riekel, and M. J. Gidley, “Analysis of the native structure of starch granules with small angle X-ray microfocus scattering,” Biopolymers, vol. 49, no. 1, pp. 91–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Suzuki, A. Chiba, and T. Yano, “Interpretation of small angle X-ray scattering from starch on the basis of fractals,” Carbohydrate Polymers, vol. 34, no. 4, pp. 357–363, 1998. View at Google Scholar · View at Scopus
  6. M. J. Gidley and S. M. Bociek, “Molecular organization in starches: a 13C CP/MAS NMR study,” Journal of the American Chemical Society, vol. 107, no. 24, pp. 7040–7044, 1985. View at Google Scholar · View at Scopus
  7. S. Perez, P. Baldwin, and D. J. Gallant, “Structural features of starch granules I,” in Starch: Chemistry and Technology, R. Whistler and J. BeMiller, Eds., pp. 149–192, Academic Press, New York, NY, USA, 3rd edition, 2009. View at Google Scholar
  8. P. J. Jenkins and A. M. Donald, “The influence of amylose on starch granule structure,” International Journal of Biological Macromolecules, vol. 17, no. 6, pp. 315–321, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-L. Putaux, A. Buléon, and H. Chanzy, “Network formation in dilute amylose and amylopectin studied by TEM,” Macromolecules, vol. 33, no. 17, pp. 6416–6422, 2000. View at Google Scholar · View at Scopus
  10. A. C. O'Sullivan and S. Perez, “The relationship between internal chain length of amylopectin and crystallinity in starch,” Biopolymers, vol. 50, no. 4, pp. 381–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Imberty, A. Buléon, V. Tran, and S. Péerez, “Recent advances in knowledge of starch structure,” Starch—Stärke, vol. 43, no. 10, pp. 375–384, 1991. View at Google Scholar
  12. P. J. Jenkins and A. M. Donald, “The effect of acid hydrolyis on native starch granule structure,” Starch—Stärke, vol. 49, no. 7-8, pp. 262–267, 1997. View at Google Scholar · View at Scopus
  13. Y.-J. Wang, V.-D. Truong, and L. Wang, “Structures and rheological properties of corn starch as affected by acid hydrolysis,” Carbohydrate Polymers, vol. 52, no. 3, pp. 327–333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Angellier-Coussy, J.-L. Putaux, S. Molina-Boisseau, A. Dufresne, E. Bertoft, and S. Perez, “The molecular structure of waxy maize starch nanocrystals,” Carbohydrate Research, vol. 344, no. 12, pp. 1558–1566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Buttrose, “Submicroscopic development and structure of starch granules in cereal endosperms,” Journal of Ultrasructure Research, vol. 4, no. 3-4, pp. 231–257, 1960. View at Google Scholar · View at Scopus
  16. T. A. Waigh, P. Perry, C. Riekel, M. J. Gidley, and A. M. Donald, “Chiral side-chain liquid-crystalline polymeric properties of starch,” Macromolecules, vol. 31, no. 22, pp. 7980–7984, 1998. View at Google Scholar · View at Scopus
  17. L. Jayakody and R. Hoover, “The effect of lintnerization on cereal starch granules,” Food Research International, vol. 35, no. 7, pp. 665–680, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Gérard, P. Colonna, A. Buléon, and V. Planchot, “Order in maize mutant starches revealed by mild acid hydrolysis,” Carbohydrate Polymers, vol. 48, no. 2, pp. 131–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zheng, F. Ai, P. R. Chang, J. Huang, and A. Dufresne, “Structure and properties of starch nanocrystal-reinforced soy protein plastics,” Polymer Composites, vol. 30, no. 4, pp. 474–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Chen, M. Wei, J. Chen, J. Huang, A. Dufresne, and P. R. Chang, “Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals,” Polymer, vol. 49, no. 7, pp. 1860–1870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-L. Putaux, S. Molina-Boisseau, T. Momaur, and A. Dufresne, “Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis,” Biomacromolecules, vol. 4, no. 5, pp. 1198–1202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Angellier, L. Choisnard, S. Molina-Boisseau, P. Ozil, and A. Dufresne, “Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology,” Biomacromolecules, vol. 5, no. 4, pp. 1545–1551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. R. Chang, F. Ai, Y. Chen, A. Dufresne, and J. Huang, “Effects of starch nanocrystal-graft-porycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites,” Journal of Applied Polymer Science, vol. 111, no. 2, pp. 619–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Angellier, S. Molina-Boisseau, and A. Dufresne, “Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber,” Macromolecules, vol. 38, no. 22, pp. 9161–9170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Yu, F. Ai, A. Dufresne, S. Gao, J. Huang, and P. R. Chang, “Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone),” Macromolecular Materials and Engineering, vol. 293, no. 9, pp. 763–770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Angellier, S. Molina-Boisseau, M. N. Belgacem, and A. Dufresne, “Surface chemical modification of waxy maize starch nanocrystals,” Langmuir, vol. 21, no. 6, pp. 2425–2433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Xu, W. Ding, J. Liu et al., “Preparation and characterization of organic-soluble acetylated starch nanocrystals,” Carbohydrate Polymers, vol. 80, no. 4, pp. 1078–1084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Thielemans, M. N. Belgacem, and A. Dufresne, “Starch nanocrystals with large chain surface modifications,” Langmuir, vol. 22, no. 10, pp. 4804–4810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Labet, W. Thielemans, and A. Dufresne, “Polymer grafting onto starch nanocrystals,” Biomacromolecules, vol. 8, no. 9, pp. 2916–2927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Namazi and A. Dadkhah, “Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids,” Carbohydrate Polymers, vol. 79, no. 3, pp. 731–737, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. N. Belgacem, J. Quillerou, and A. Gandini, “Urethanes and polyurethanes bearing furan moieties-3. Synthesis, characterization and comparative kinetics of the formation of diurethanes,” European Polymer Journal, vol. 29, no. 9, pp. 1217–1224, 1993. View at Google Scholar · View at Scopus
  32. H. Namazi and A. Dadkhah, “Surface modification of starch nanocrystals through ring-opening polymerization of ε-caprolactone and investigation of their microstructures,” Journal of Applied Polymer Science, vol. 110, no. 4, pp. 2405–2412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Song, C. Wang, Z. Pan, and X. Wang, “Preparation and characterization of amphiphilic starch nanocrystals,” Journal of Applied Polymer Science, vol. 107, no. 1, pp. 418–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Chen, X. Cao, P. R. Chang, and M. A. Huneault, “Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch,” Carbohydrate Polymers, vol. 73, no. 1, pp. 8–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Angellier, S. Molina-Boisseau, L. Lebrun, and A. Dufresne, “Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber,” Macromolecules, vol. 38, no. 9, pp. 3783–3792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Angellier, S. Molina-Boisseau, and A. Dufresne, “Waxy maize starch nanocrystals as filler in natural rubber,” Macromolecular Symposia, vol. 233, no. 1, pp. 132–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Materne, F. Corvasce, and P. Leitz, European patent no. EP0995775A1, 2000.
  38. H. Angellier, S. Molina-Boisseau, P. Dole, and A. Dufresne, “Thermoplastic starch—waxy maize starch nanocrystals nanocomposites,” Biomacromolecules, vol. 7, no. 2, pp. 531–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Viguié, S. Molina-Boisseau, and A. Dufresne, “Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals,” Macromolecular Bioscience, vol. 7, no. 11, pp. 1206–1216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Kristo and C. G. Biliaderis, “Physical properties of starch nanocrystal-reinforced pullulan films,” Carbohydrate Polymers, vol. 68, no. 1, pp. 146–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Angellier, J.-L. Putaux, S. Molina-Boisseau, D. Dupeyre, and A. Dufresne, “Starch nanocrystal fillers in an acrylic polymer matrix,” Macromolecular Symposia, vol. 221, no. 1, pp. 95–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Dufresne, J. Cavaillé, and W. Helbert, “New nanocomposite materials: microcrystalline starch reinforced thermoplastic,” Macromolecules, vol. 29, no. 23, pp. 7624–7626, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Wang and L. Zhang, “High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 11, pp. 5831–5838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Habibi and A. Dufresne, “Highly filled bionanocomposites from functionalized polysaccharide nanocrystals,” Biomacromolecules, vol. 9, no. 7, pp. 1974–1980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. K. G. Nair and A. Dufresne, “Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior,” Biomacromolecules, vol. 4, no. 3, pp. 657–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. K. G. Nair and A. Dufresne, “Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior,” Biomacromolecules, vol. 4, no. 3, pp. 666–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Lu, L. Weng, and L. Zhang, “Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers,” Biomacromolecules, vol. 5, no. 3, pp. 1046–1051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Dufresne and J.-Y. Cavaillé, “Clustering and percolation effects in microcrystalline starch-reinforced thermoplastic,” Journal of Polymer Science B, vol. 36, no. 12, pp. 2211–2224, 1998. View at Google Scholar · View at Scopus
  49. A. Dufresne, “Polysaccharide nanocrystal reinforced nanocomposites,” Canadian Journal of Chemistry, vol. 86, no. 6, pp. 484–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Favier, J. Y. Cavaillé, S. C. Shrivastava, and G. R. Canova, “Mechanical percolation in cellulose whisker nanocomposites,” Polymer Engineering and Science, vol. 37, no. 10, pp. 1732–1739, 1997. View at Google Scholar · View at Scopus
  51. A. Dufresne, “Comparing the mechanical properties of high performances polymer nanocomposites from biological sources,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 2, pp. 322–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. G. Nair, A. Dufresne, A. Gandini, and M. N. Belgacem, “Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers,” Biomacromolecules, vol. 4, no. 6, pp. 1835–1842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Lin, G. Chen, J. Huang, A. Dufresne, and P. R. Chang, “Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone,” Journal of Applied Polymer Science, vol. 113, no. 5, pp. 3417–3425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Chen, A. Dufresne, J. Huang, and P. R. Chang, “A novel thermoformable bionanocomposite based on cellulose nanoerystal-graft-poly(ε-caprolactone),” Macromolecular Materials and Engineering, vol. 294, no. 1, pp. 59–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Feng, Z. Zhou, A. Dufresne, J. Huang, M. Wei, and L. An, “Structure and properties of new thermoforming bionanocomposites based ort chitin whisker-graft-polycaprolactone,” Journal of Applied Polymer Science, vol. 112, no. 5, pp. 2830–2837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Dong and M. Roman, “Fluorescently labeled cellulose nanocrystals for bioimaging applications,” Journal of the American Chemical Society, vol. 129, no. 45, pp. 13810–13811, 2007. View at Publisher · View at Google Scholar · View at Scopus