Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 746029, 9 pages
http://dx.doi.org/10.1155/2011/746029
Research Article

Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

1AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
2Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA
3Department of Civil and Environmental Engineering and Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

Received 15 July 2010; Accepted 1 November 2010

Academic Editor: Teng Li

Copyright © 2011 Y. L. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, vol. 381, no. 6584, pp. 678–680, 1996. View at Google Scholar · View at Scopus
  2. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, no. 5334, pp. 1971–1975, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, no. 5453, pp. 637–640, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Vigolo, A. Penicaud, C. Coulon et al., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, vol. 290, no. 5495, pp. 1331–1334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. I. Yakobson, M. P. Campbell, C. J. Brabec, and J. Bernholc, “High strain rate fracture and C-chain unraveling in carbon nanotubes,” Computational Materials Science, vol. 8, no. 4, pp. 341–348, 1997. View at Google Scholar · View at Scopus
  6. G. Gao, T. Çaǧin, and W. A. Goddard III, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, vol. 9, no. 3, pp. 184–191, 1998. View at Google Scholar · View at Scopus
  7. Y. L. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, and K. C. Hwang, “Mechanics of hydrogen storage in carbon nanotubes,” Journal of the Mechanics and Physics of Solids, vol. 56, no. 11, pp. 3224–3241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yin, Y. L. Chen, J. Yin, and K. Huang, “Geometric conservation laws for Y-branched carbon nanotubes,” Nanotechnology, vol. 17, pp. 1–5, 2006. View at Google Scholar
  9. Y.-L. Chen, B. Liu, Y.-J. Yin, Y.-G. Huang, and K.-C. Hwuang, “Nonlinear deformation processes and damage modes of super carbon nanotubes with armchair-armchair topology,” Chinese Physics Letters, vol. 25, no. 7, pp. 2577–2580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Chen, Y. Yin, Y. Huang, and K.-C. Hwang, “Atomistic simulations of the nonlinear deformation and damage modes of super carbon nanotubes,” Journal of Computational and Theoretical Nanoscience, vol. 6, no. 1, pp. 41–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites,” Chemical Physics Letters, vol. 370, no. 5-6, pp. 820–824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” Journal of Physical Chemistry B, vol. 106, no. 12, pp. 3046–3048, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. V. Frankland and V. M. Harik, “Analysis of carbon nanotube pull-out from a polymer matrix,” Surface Science, vol. 525, no. 1–3, pp. L103–L108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite,” Science, vol. 265, no. 5176, pp. 1212–1214, 1994. View at Google Scholar · View at Scopus
  15. M. S. P. Shaffer and A. H. Windle, “Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites,” Advanced Materials, vol. 11, no. 11, pp. 937–941, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, “Surfactant-assisted processing of carbon nanotube/polymer composites,” Chemistry of Materials, vol. 12, no. 4, pp. 1049–1052, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer, vol. 43, no. 5, pp. 1701–1703, 2002. View at Google Scholar · View at Scopus
  18. X. Tong, X.-J. He, and H.-M. Cheng, “Effect of carbon nanotubes on mechanical properties and crystallization process of high density polyethylene,” New Carbon Materials, vol. 19, no. 4, pp. 261–267, 2004. View at Google Scholar · View at Scopus
  19. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, vol. 76, no. 20, pp. 2868–2870, 2000. View at Google Scholar · View at Scopus
  20. C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, “Deformation of carbon nanotubes in nanotube-polymer composites,” Applied Physics Letters, vol. 74, no. 22, pp. 3317–3319, 1999. View at Google Scholar · View at Scopus
  21. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single-walled carbon nanotube-polymer composites: strength and weakness,” Advanced Materials, vol. 12, no. 10, pp. 750–753, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Ni and S. B. Sinnott, “Tribological properties of carbon nanotube bundles predicted from atomistic simulations,” Surface Science, vol. 487, no. 1–3, pp. 87–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Hu, I. Jang, and S. B. Sinnott, “Modification of carbon nanotube-polystyrene matrix composites through polyatomic-ion beam deposition: predictions from molecular dynamics simulations,” Composites Science and Technology, vol. 63, no. 11, pp. 1663–1669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. L. Chen, B. Liu, X. Q. He, Y. Huang, and K. C. Hwang, “Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites,” Composites Science and Technology, vol. 70, no. 9, pp. 1360–1367, 2010. View at Publisher · View at Google Scholar
  25. R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, and D. H. Wu, “Processing and properties of carbon nanotubes-nano-SiC ceramic,” Journal of Materials Science, vol. 33, no. 21, pp. 5243–5246, 1998. View at Google Scholar · View at Scopus
  26. E. Flahaut, A. Peigney, CH. Laurent, CH. Marlière, F. Chastel, and A. Rousset, “Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties,” Acta Materialia, vol. 48, no. 14, pp. 3803–3812, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Peigney, C. Laurent, O. Dumortier, and A. Rousset, “Carbon nanotubes-Fe-alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders,” Journal of the European Ceramic Society, vol. 18, no. 14, pp. 1995–1104, 1998. View at Google Scholar · View at Scopus
  28. C. Laurent, A. Peigney, O. Dumortier, and A. Rousset, “Carbon nanotubes-Fe-Alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-Pressed composites,” Journal of the European Ceramic Society, vol. 18, no. 14, pp. 2005–2013, 1998. View at Google Scholar · View at Scopus
  29. A. Peigney, CH. Laurent, and A. Rousset, “Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes,” Key Engineering Materials, no. 136, pp. 743–746, 1997. View at Google Scholar · View at Scopus
  30. X. Chen, J. Xia, J. Peng, W. Li, and S. Xie, “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, vol. 60, no. 2, pp. 301–306, 2000. View at Google Scholar · View at Scopus
  31. C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, and D. H. Wu, “Fabrication of aluminum-carbon nanotube composites and their electrical properties,” Carbon, vol. 37, no. 5, pp. 855–858, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” British Journal of Applied Physics, vol. 3, no. 1, pp. 72–79, 1952. View at Google Scholar
  33. C. T. Chon and C. T. Sun, “Stress distributions along a short fibre in fibre reinforced plastics,” Journal of Materials Science, vol. 15, no. 4, pp. 931–938, 1980. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Lawrence, “Some theoretical considerations of fibre pull-out from an elastic matrix,” Journal of Materials Science, vol. 7, no. 1, pp. 1–6, 1972. View at Publisher · View at Google Scholar · View at Scopus
  35. D. B. Marshall, B. N. Cox, and A. G. Evans, “The mechanics of matrix cracking in brittle-matrix fiber composites,” Acta Metallurgica, vol. 33, no. 11, pp. 2013–2021, 1985. View at Google Scholar · View at Scopus
  36. J. W. Hutchinson and H. M. Jensen, “Models of fiber debonding and pullout in brittle composites with friction,” Mechanics of Materials, vol. 9, no. 2, pp. 139–163, 1990. View at Google Scholar · View at Scopus
  37. B. Budiansky, A. G. Evans, and J. W. Hutchinson, “Fiber-matrix debonding effects oncracking in aligned fiber ceramic composites,” International Journal of Solids and Structures, vol. 32, no. 3-4, pp. 315–328, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press LLC, Boca Raton, Fla, USA, 1995.
  39. H. Tada, P. C. Paris, and G R. Irwin, The Stress Analysis of Cracks Handbook, ASME Press, New York, NY, USA, 3rd edition, 2000.
  40. Z. Xia, L. Riester, W. A. Curtin et al., “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Materialia, vol. 52, no. 4, pp. 931–944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Xia and W. A. Curtin, “Tough-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, vol. 48, no. 20, pp. 4879–4892, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Zhou, Y. Huang, B. Liu et al., “Self-folding of single- and multiwall carbon nanotubes,” Applied Physics Letters, vol. 90, no. 7, Article ID 73107, 2007. View at Publisher · View at Google Scholar · View at Scopus