Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 850930, 7 pages
http://dx.doi.org/10.1155/2011/850930
Research Article

ZnO Nanowire Formation by Two-Step Deposition Method Using Energy-Controlled Hollow-Type Magnetron RF Plasma

Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Sendai 980-8579, Japan

Received 14 June 2011; Accepted 16 September 2011

Academic Editor: Renzhi Ma

Copyright © 2011 Hideki Ono and Satoru Iizuka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hüemmer, “Interband magnetoreflection of ZnO,” Physica Status Solidi B, vol. 56, no. 1, pp. 249–260, 1973. View at Google Scholar · View at Scopus
  2. A. Ohtomo, K. Tamura, M. Kawasaki et al., “Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices,” Applied Physics Letters, vol. 77, no. 14, Article ID 2204, 3 pages, 2000. View at Google Scholar
  3. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, no. 2, pp. 113–116, 2001. View at Google Scholar
  4. F. Patolsky, G. Zheng, and C. M. Lieber, “Nanowire sensors for medicine and the life sciences,” Nanomedicine, vol. 1, no. 1, pp. 51–65, 2006. View at Publisher · View at Google Scholar
  5. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, no. 5, pp. 89–90, 1964. View at Publisher · View at Google Scholar
  6. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208–211, 1998. View at Publisher · View at Google Scholar
  7. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 95, no. 6, pp. 3141–3147, 2004. View at Publisher · View at Google Scholar
  8. S. Choopun, H. Tabata, and T. Kawai, “Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere,” Journal of Crystal Growth, vol. 274, no. 1-2, pp. 167–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Ono and S. Iizuka, “Growth of ZnO nanowires in hollow-type magnetron O2/Ar RF plasma,” Thin Solid Films, vol. 518, no. 3, pp. 1016–1019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Kumeta, H. Ono, and S. Iizuka, “Formation of ZnO nanostructures in energy-controlled hollow-type magnetron RF plasma,” Thin Solid Films, vol. 518, no. 13, pp. 3522–3525, 2010. View at Publisher · View at Google Scholar
  11. J. Emi, K. Kato, T. Abe, and S. Iizuka, “Formation of nanoparticles by control of electron temperature in hollow-typed magnetron radio frequency CH4/H2 plasma,” Japanese Journal of Applied Physics, vol. 45, no. 10, pp. 8071–8074, 2006. View at Publisher · View at Google Scholar
  12. J. Emi and S. Iizuka, “Characteristics of carbon-related materials deposited in electron-energy controlled CH4/H2 RF discharge plasmas,” Diamond and Related Materials, vol. 20, no. 4, pp. 568–572, 2011. View at Publisher · View at Google Scholar
  13. K. Prabakar and H. Kim, “Growth control of ZnO nanorod density by sol-gel method,” Thin Solid Films, vol. 518, no. 24, pp. e136–e138, 2010. View at Publisher · View at Google Scholar · View at Scopus