Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 853832, 9 pages
Research Article

Facile Synthesis of Monodisperse ZnO Nanocrystals by Direct Liquid Phase Precipitation

Department of Chemistry, University College Cork, Cork, Ireland

Received 21 May 2010; Accepted 6 July 2010

Academic Editor: Quanqin Dai

Copyright © 2011 Lan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


ZnO nanocrystals can be synthesized by a variety of methods. Among them, only a few nonhydrolytic methods have been successful at low synthesis temperatures in terms of size, crystallinity, morphology and surface-defect control. These methods require very careful control of conditions and carefully engineered precursors. A new methodology—direct liquid phase precipitation—is reported here that can produce nanocrystals (NCs) which are a little difficult to obtain for these complex synthesis techniques in a more facile and efficient way (i.e., at room temperature). This technique results in high quality ZnO nanocrystals of diameter 5–12 nm and different morphologies. Characterisation of ZnO products shows that both synthesis and ageing conditions have significant effects on the formation of the nanocrystals. Capping agents and ageing temperature/time can be used to control both size and crystallinity of the products. The use of in situ or ex situ ageing conditions can result in different particle morphologies. Both in situ and ex situ ageing shows that mild ageing conditions (e.g., 60– and 24–48 hours) are required to produce the highest quality nanomaterials.