Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 869618, 8 pages
http://dx.doi.org/10.1155/2011/869618
Research Article

Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells

1Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
2Department of Chemistry, National Central University, Chung-Li 320, Taiwan

Received 31 May 2010; Accepted 8 September 2010

Academic Editor: William W. Yu

Copyright © 2011 Huei-Siou Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Su, B.-Y. Hong, and C.-M. Tseng, “Sol-gel preparation and photocatalysis of titanium dioxide,” Catalysis Today, vol. 96, no. 3, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  3. W. W. So, S. B. Park, K. J. Kim, and S. J. Moon, “Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titania sol,” Journal of Colloid and Interface Science, vol. 191, no. 2, pp. 398–406, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yin, Y. Wada, T. Kitamura et al., “Hydrothermal synthesis of nanosized anatase and ruffle TiO2 using amorphous phase TiO2,” Journal of Materials Chemistry, vol. 11, no. 6, pp. 1694–1703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kominami, J.-I. Kato, S.-Y. Murakami et al., “Synthesis of titanium(IV) oxide of ultra-high photocatalytic activity: high-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols,” Journal of Molecular Catalysis A: Chemical, vol. 144, no. 1, pp. 165–171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. H.-Y. Byun, R. Vittal, D. Y. Kim, and K.-J. Kim, “Beneficial role of cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells,” Langmuir, vol. 20, no. 16, pp. 6853–6857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou, “Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructutes,” Journal of Physical Chemistry C, vol. 111, no. 6, pp. 2709–2714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. R. Bacsa and J. Kiwi, “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid,” Applied Catalysis B: Environmental, vol. 16, no. 1, pp. 19–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. D. D. Beck and R. W. Siegel, “Dissociative adsorption of hydrogen sulfide over nanophase titanium dioxide,” Journal of Materials Research, vol. 7, no. 10, pp. 2840–2845, 1992. View at Google Scholar · View at Scopus
  10. T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, and M. Matsumura, “Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide,” Journal of Physical Chemistry B, vol. 101, no. 33, pp. 6415–6419, 1997. View at Google Scholar · View at Scopus
  11. N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” Journal of Physical Chemistry B, vol. 103, no. 17, pp. 3308–3314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8989–8994, 2000. View at Google Scholar · View at Scopus
  13. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, and S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells,” Central European Journal of Chemistry, vol. 4, no. 3, pp. 476–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Su, C.-M. Tseng, L.-F. Chen, B.-H. You, B.-C. Hsu, and S.-S. Chen, “Sol-hydrothermal preparation and photocatalysis of titanium dioxide,” Thin Solid Films, vol. 498, no. 1-2, pp. 259–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Wu, G. Lin, D. Chen et al., “Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide,” Chemistry of Materials, vol. 14, no. 5, pp. 1974–1980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Su, K.-F. Lin, Y.-H. Lin, and B.-H. You, “Preparation and characterization of high-surface-area titanium dioxide by sol-gel process,” Journal of Porous Materials, vol. 13, no. 3, pp. 251–258, 2006. View at Publisher · View at Google Scholar
  17. Y.-F. Xie, Preparation and characterization of TiO2 by sol-gel from hydrothermal to calcination from nano-powder to nano-film, M.S. thesis, National Taipei University of Technology, 2006.
  18. B. Ohtani, Y. Ogawa, and S.-I. Nishimoto, “Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions,” Journal of Physical Chemistry B, vol. 101, no. 19, pp. 3746–3752, 1997. View at Google Scholar · View at Scopus
  19. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  20. J. Jiu, S. Isoda, F. Wang, and M. Adachi, “Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film,” Journal of Physical Chemistry B, vol. 110, no. 5, pp. 2087–2092, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hou, B. Tian, F. Li, Z. Bian, D. Zhao, and C. Huang, “Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells,” Journal of Materials Chemistry, vol. 15, no. 24, pp. 2414–2420, 2005. View at Publisher · View at Google Scholar · View at Scopus