Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 132424, 15 pages
http://dx.doi.org/10.1155/2012/132424
Review Article

Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review

1School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, 16150 Kubang Kerian, Malaysia
2Assembly Technology Development Malaysia, Intel Technology Sdn Bhd, Kulim Hi-Tech Park, Kedah, 09000 Kulim, Malaysia

Received 10 January 2012; Accepted 27 February 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Ismail Ab Rahman and Vejayakumaran Padavettan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Drexler, Engines of Creation: The Coming era of Nanotechnology, Doubleday/Anchor Press, New York, NY, USA, 1986.
  2. K. J. Klabunde, Nanoscale Materials in Chemistry, Wiley-Interscience, New York, NY, USA, 2001.
  3. G. Kickelbick, “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,” Progress in Polymer Science, vol. 28, no. 1, pp. 83–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. H. Zeng, D. Z. Wang, A. B. Yu, and G. Q. Lu, “Synthesis of polymer-montmorillonite nanocomposites by in situ intercalative polymerization,” Nanotechnology, vol. 13, no. 5, pp. 549–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Wang and J. T. Pinnavaia, “Nanolayer reinforcement of elastomeric polyurethane,” Chemistry of Materials, vol. 10, no. 12, pp. 1820–1826, 1998. View at Publisher · View at Google Scholar
  6. E. F. Vansant, P. V. D. Voort, and K. C. Vrancken, Characterization and Chemical Modification of the Silica Surface, Elsevier Science, New York, NY, USA, 1995.
  7. E. Reverchon and R. Adami, “Nanomaterials and supercritical fluids,” Journal of Supercritical Fluids, vol. 37, no. 1, pp. 1–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. T. Y. Tan, S. Liu, Y. Zhang, M.-Y. Han, and S. T. Selvan, “Microemulsion preparative method (Overview),” Comprehensive Nanoscience and Technology, vol. 5, pp. 399–441, 2011. View at Google Scholar
  9. S. Liu and M.-Y. Han, “Silica-coated metal nanoparticles,” Chemistry, vol. 5, no. 1, pp. 36–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. P. Bagwe, L. R. Hilliard, and W. Tan, “Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding,” Langmuir, vol. 22, no. 9, pp. 4357–4362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surgical Neurology, vol. 61, no. 3, pp. 216–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Klabunde, J. Stark, O. Koper et al., “Nanocrystals as stoichiometric reagents with unique surface chemistry,” The Journal of Physical Chemistry, vol. 100, no. 30, pp. 12142–12153, 1996. View at Google Scholar · View at Scopus
  13. L. L. Hench and J. K. West, “The Sol-Gel process,” Chemical Reviews, vol. 90, no. 1, pp. 33–72, 1990. View at Google Scholar · View at Scopus
  14. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid And Interface Science, vol. 26, no. 1, pp. 62–69, 1968. View at Google Scholar · View at Scopus
  15. G. H. Bogush, M. A. Tracy, and C. F. Zukoski, “Preparation of monodisperse silica particles: control of size and mass fraction,” Journal of Non-Crystalline Solids, vol. 104, no. 1, pp. 95–106, 1988. View at Google Scholar · View at Scopus
  16. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, Calif, USA, 1990.
  17. T. Matsoukas and E. Gulari, “Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate,” Journal of Colloid And Interface Science, vol. 124, no. 1, pp. 252–261, 1988. View at Google Scholar · View at Scopus
  18. T. Matsoukas and E. Gulari, “Monomer-addition growth with a slow initiation step: a growth model for silica particles from alkoxides,” Journal of Colloid And Interface Science, vol. 132, no. 1, pp. 13–21, 1989. View at Google Scholar · View at Scopus
  19. G. H. Bogush and C. F. Zukoski, “Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides,” Journal of Colloid And Interface Science, vol. 142, no. 1, pp. 19–34, 1991. View at Google Scholar · View at Scopus
  20. J. K. Bailey and M. L. Mecartney, “Formation of colloidal silica particles from alkoxides,” Colloids and Surfaces, vol. 63, no. 1-2, pp. 151–161, 1992. View at Google Scholar · View at Scopus
  21. K. Lee, A. N. Sathyagal, and A. V. McCormick, “A closer look at an aggregation model of the Stober process,” Colloids and Surfaces A, vol. 144, no. 1–3, pp. 115–125, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Green, J. S. Lin, Y. F. Lam, M. Z.-C. Hu, D. W. Schaefer, and M. T. Harris, “Size, volume fraction, and nucleation of Stober silica nanoparticles,” Journal of Colloid and Interface Science, vol. 266, no. 2, pp. 346–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut et al., “An optimized sol-gel synthesis of stable primary equivalent silica particles,” Colloids and Surfaces A, vol. 294, no. 1–3, pp. 102–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Park, K. D. Kim, and H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles,” Colloids and Surfaces A, vol. 197, no. 1–3, pp. 7–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, and K. Makino, “A novel method for synthesis of silica nanoparticles,” Journal of Colloid and Interface Science, vol. 289, no. 1, pp. 125–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut et al., “Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process,” Ceramics International, vol. 32, no. 6, pp. 691–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Jafarzadeh, I. A. Rahman, and C. S. Sipaut, “Synthesis of silica nanoparticles by modified sol-gel process: the effect of mixing modes of the reactants and drying techniques,” Journal of Sol-Gel Science and Technology, vol. 50, no. 3, pp. 328–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kwon and G. L. Messing, “The effect of particle solubility on the strength of nanocrystalline agglomerates: boehmite,” Nanostructured Materials, vol. 8, no. 4, pp. 399–418, 1997. View at Google Scholar · View at Scopus
  29. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, and C. K. Chee, “Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol-gel process,” Ceramics International, vol. 34, no. 8, pp. 2059–2066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, and C. K. Chee, “Size-dependent physicochemical and optical properties of silica nanoparticles,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 328–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Parida, S. Dash, S. Patel, and B. K. Mishra, “Adsorption of organic molecules on silica surface,” Advances in Colloid and Interface Science, vol. 121, no. 1–3, pp. 77–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. V. M. Gun'ko, E. F. Voronin, L. V. Nosach et al., “Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media,” Journal of Colloid and Interface Science, vol. 355, no. 2, pp. 300–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. M. Rabinovich, J. B. Macchesney, D. W. Johnson et al., “Sol-gel preparation of transparent silica glass,” Journal of Non-Crystalline Solids, vol. 63, no. 1-2, pp. 155–161, 1984. View at Google Scholar · View at Scopus
  34. O. Yong-Taeg, S. Fujino, and K. Morinaga, “Fabrication of transparent silica glass by powder sintering,” Science and Technology of Advanced Materials, vol. 3, no. 4, pp. 297–301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Kurumoto, T. Yamada, and T. Uchino, “Enhanced blue photoluminescence from SiCl4-treated nanometer-sized silica particles,” Journal of Non-Crystalline Solids, vol. 353, no. 5–7, pp. 684–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Mohanty, N. C. Mishra, S. V. Bhat, P. K. Basu, and D. Kanjilal, “Dense electronic excitation induced defects in fused silica,” Journal of Physics D, vol. 36, no. 24, pp. 3151–3155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Neves, T. Trindade, M. Peres et al., “Photoluminescence of zinc oxide supported on submicron silica particles,” Materials Science and Engineering C, vol. 25, no. 5–8, pp. 654–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Skuja, B. Güttler, D. Schiel, and A. R. Silin, “Infrared photoluminescence of preexisting or irradiation-induced interstitial oxygen molecules in glassy SiO2 and α-quartz,” Physical Review B, vol. 58, no. 21, pp. 14296–14304, 1998. View at Google Scholar · View at Scopus
  39. M. Jafarzadeh, I. A. Rahman, and C. S. Sipaut, “Optical properties of amorphous organo-modified silica nanoparticles produced via co-condensation method,” Ceramics International, vol. 36, no. 1, pp. 333–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. T. Chen, “Size effect on the photoluminescence shift in wide band-gap material: a case study of SiO2-nanoparticles,” Tamkang Journal of Science and Engineering, vol. 5, no. 2, pp. 99–106, 2002. View at Google Scholar · View at Scopus
  41. Y. D. Glinka, S. H. Lin, and Y. T. Chen, “The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles,” Applied Physics Letters, vol. 75, no. 6, pp. 778–780, 1999. View at Google Scholar · View at Scopus
  42. Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light,” Physical Review B, vol. 62, no. 7, pp. 4733–4743, 2000. View at Google Scholar · View at Scopus
  43. Y. D. Glinka, S. H. Lin, and Y. T. Chen, “Time-resolved photoluminescence study of silica nanoparticles as compared to bulk type-III fused silica,” Physical Review B, vol. 66, no. 3, pp. 035404–035413, 2002. View at Google Scholar · View at Scopus
  44. A. N. Trukhin, L. N. Skuja, A. G. Boganov, and V. S. Rudenko, “The correlation of the 7.6 eV optical absorption band in pure fused silicon dioxide with twofold-coordinated silicon,” Journal of Non-Crystalline Solids, vol. 149, no. 1-2, pp. 96–101, 1992. View at Google Scholar · View at Scopus
  45. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Physical Review B, vol. 45, no. 2, pp. 586–591, 1992. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer, vol. 42, no. 3, pp. 879–887, 2001. View at Google Scholar · View at Scopus
  47. Y. Y. Yu, C. Y. Chen, and W. C. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer, vol. 44, no. 3, pp. 593–601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Shu, X. Li, and Z. Zhang, “Surface modified nano-silica and its action on polymer,” Progress in Chemistry, vol. 20, no. 10, pp. 1509–1514, 2008. View at Google Scholar · View at Scopus
  49. K. N. Pham, D. Fullston, and K. S. Crentsil, “Surface modification for stability of nano-sized silica colloids,” Journal of Colloid and Interface Science, vol. 315, no. 1, pp. 123–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Wei, S. Song, and H. Cao, “Strengthening of basalt fibers with nano-SiO2-epoxy composite coating,” Materials and Design, vol. 32, no. 8-9, pp. 4180–4186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Bailly, M. Kontopoulou, and K. El Mabrouk, “Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites,” Polymer, vol. 51, no. 23, pp. 5506–5515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Sun, Z. Zhang, and C. P. Wong, “Study on mono-dispersed nano-size silica by surface modification for underfill applications,” Journal of Colloid and Interface Science, vol. 292, no. 2, pp. 436–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Vejayakumaran, I. A. Rahman, C. S. Sipaut, J. Ismail, and C. K. Chee, “Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups,” Journal of Colloid and Interface Science, vol. 328, no. 1, pp. 81–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Branda, B. Silvestri, G. Luciani, and A. Costantini, “The effect of mixing alkoxides on the Stöber particles size,” Colloids and Surfaces A, vol. 299, no. 1–3, pp. 252–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano, vol. 2, no. 11, pp. 2324–2330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. M. Suzuki, T. Nakamura, K. Fukumoto, M. Yamamoto, Y. Akimoto, and K. Yano, “Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation,” Journal of Molecular Catalysis A, vol. 280, no. 1-2, pp. 224–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. I. A. Rahman, M. Jafarzadeh, and C. S. Sipaut, “Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES),” Ceramics International, vol. 35, no. 5, pp. 1883–1888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Chen, A. Osaka, S. Hayakawa, K. Tsuru, E. Fujii, and K. Kawabata, “Novel one-pot sol-gel preparation of amino-functionalized silica nanopartieles,” Chemistry Letters, vol. 37, no. 11, pp. 1170–1171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Naka, Y. Komori, and H. Yoshitake, “One-pot synthesis of organo-functionalized monodisperse silica particles in W/O microemulsion and the effect of functional groups on addition into polystyrene,” Colloids and Surfaces A, vol. 361, no. 1–3, pp. 162–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Kim, J. S. Lee, C. M. F. Barry, and J. L. Mead, “Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites,” Polymer Engineering and Science, vol. 47, no. 12, pp. 2049–2056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Park, J. W. Kim, and D. J. Yoon, “Interfacial evaluation and microfailure mechanisms of single carbon fiber/bismaleimide (BMI) composites by tensile and compressive fragmentation tests and acoustic emission,” Composites Science and Technology, vol. 62, no. 6, pp. 743–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Meng, X. Hu, F. Y. C. Boey, and L. Li, “Effect of layered nano-organosilicate on the gel point rheology of bismaleimide/diallylbisphenol A resin,” Polymer, vol. 46, no. 8, pp. 2766–2776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Liang, X. Hu, and T. Lu, “Inorganic whiskers reinforced bismaleimide composites: part II the tribological behavior of BMI/potassium titanate composites,” Journal of Materials Science, vol. 40, no. 7, pp. 1743–1748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Z. Wan, Y. L. Wang, F. He, Y. Huang, and H. J. Jiang, “Mechanical performance of hybrid bismaleimide composites reinforced with three-dimensional braided carbon and Kevlar fabrics,” Composites Part A, vol. 38, no. 2, pp. 495–504, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Zhang, Z. Zhang, K. Friedrich, and C. Eger, “Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content,” Acta Materialia, vol. 54, no. 7, pp. 1833–1842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. G. I. Rodriguez, P. Carreira, A. G. Diez, D. Hui, R. Artiaga, and L. M. L. Marzan, “Nanofiller effect on the glass transition of a polyurethane,” Journal of Thermal Analysis and Calorimetry, vol. 87, no. 1, pp. 45–47, 2007. View at Google Scholar
  67. X. F. Yao, D. Zhou, and H. Y. Yeh, “Macro/microscopic fracture characterizations of SiO2/epoxy nanocomposites,” Aerospace Science and Technology, vol. 12, no. 3, pp. 223–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. W. D. Liu, B. K. Zhu, J. Zhang, and Y. Y. Xu, “Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process,” Polymers for Advanced Technologies, vol. 18, no. 7, pp. 522–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Vega-Baudrit, V. Navarro-Bañón, P. Vázquez, and J. M. Martín-Martínez, “Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives,” International Journal of Adhesion and Adhesives, vol. 26, no. 5, pp. 378–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S. C. Kwon, T. Adachi, W. Araki, and A. Yamaji, “Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: considered in terms of the particle packing model,” Acta Materialia, vol. 54, no. 12, pp. 3369–3374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Preghenella, A. Pegoretti, and C. Migliaresi, “Thermo-mechanical characterization of fumed silica-epoxy nanocomposites,” Polymer, vol. 46, no. 26, pp. 12065–12072, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Bondioli, V. Cannillo, E. Fabbri, and M. Messori, “Epoxy-silica nanocomposites: preparation, experimental characterization, and modeling,” Journal of Applied Polymer Science, vol. 97, no. 6, pp. 2382–2386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, and L. Mascia, “Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness,” Polymer, vol. 46, no. 23, pp. 10506–10516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. L. Liu, C. Y. Hsu, W. L. Wei, and R. J. Jeng, “Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica,” Polymer, vol. 44, no. 18, pp. 5159–5167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Y. Yu and W. C. Chen, “Transparent organic-inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica,” Materials Chemistry and Physics, vol. 82, no. 2, pp. 388–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Wang, Y. Bai, S. Liu, J. Wu, and C. P. Wong, “Combined effects of silica filler and its interface in epoxy resin,” Acta Materialia, vol. 50, no. 17, pp. 4369–4377, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Q. Zhang, M. Z. Rong, S. L. Yu, B. Wetzel, and K. Friedrich, “Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites,” Wear, vol. 253, no. 9-10, pp. 1086–1093, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Chen, S. Zhou, H. Yang, G. Gu, and L. Wu, “Preparation and characterization of nanocomposite polyurethane,” Journal of Colloid and Interface Science, vol. 279, no. 2, pp. 370–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. X. Gao, Y. Zhu, X. Zhao et al., “Synthesis and characterization of polyurethane/SiO2 nanocomposites,” Applied Surface Science, vol. 257, no. 10, pp. 4719–4724, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Sargsyan, A. Tonoyan, S. Davtyan, and C. Schick, “The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data,” European Polymer Journal, vol. 43, no. 8, pp. 3113–3127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. S. P. Davtyan, A. A. Berlin, K. Shik, A. O. Tonoyan, and S. Z. Rogovina, “Polymer nanocomposites with a uniform distribution of nanoparticles in a polymer matrix synthesized by the frontal polymerization technique,” Nanotechnologies in Russia, vol. 4, no. 7-8, pp. 489–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Klonos, A. Panagopoulou, L. Bokobza, A. Kyritsis, V. Peoglos, and P. Pissis, “Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane),” Polymer, vol. 51, no. 23, pp. 5490–5499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Fragiadakis, L. Bokobza, and P. Pissis, “Dynamics near the filler surface in natural rubber-silica nanocomposites,” Polymer, vol. 52, no. 14, pp. 3175–3182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Klonos, A. Panagopoulou, A. Kyritsis, L. Bokobza, and P. Pissis, “Dielectric studies of segmental dynamics in poly(dimethylsiloxane)/titania nanocomposites,” Journal of Non-Crystalline Solids, vol. 357, no. 2, pp. 610–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Palza, R. Vergara, and P. Zapata, “Composites of polypropylene melt blended with synthesized silica nanoparticles,” Composites Science and Technology, vol. 71, no. 4, pp. 535–540, 2011. View at Publisher · View at Google Scholar · View at Scopus