Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 174353, 8 pages
http://dx.doi.org/10.1155/2012/174353
Research Article

Synthesis and Characterizations of Poly(3-hexylthiophene) and Modified Carbon Nanotube Composites

Center of Excellence for Research in Engineering Materials, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Received 14 February 2012; Revised 12 May 2012; Accepted 14 May 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Mohammad Rezaul Karim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science, vol. 270, no. 5243, pp. 1789–1791, 1995. View at Google Scholar · View at Scopus
  2. L. M. Campos, A. Tontcheva, S. Günes et al., “Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell,” Chemistry of Materials, vol. 17, no. 16, pp. 4031–4033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, no. 5564, pp. 2425–2427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal—polymer composites in hybrid solar cells,” Journal of the American Chemical Society, vol. 126, no. 21, pp. 6550–6551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Kymakis and G. A. J. Amaratunga, “Single-wall carbon nanotube/conjugated polymer photovoltaic devices,” Applied Physics Letters, vol. 80, no. 1, pp. 112–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, “High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites,” Journal of Applied Physics, vol. 93, no. 3, pp. 1764–1768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, “Single-wall carbon nanotube-polymer solar cells,” Progress in Photovoltaics, vol. 13, no. 2, pp. 165–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. J. Landia, S. L. Castrob, H. J. Rufa, C. M. Evansa, S. G. Baileyc, and R. P. Raffaelle, “CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells,” Solar Energy Materials and Solar Cells, vol. 87, p. 733, 2005. View at Google Scholar
  9. M. M. Alam and S. A. Jenekhe, “Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers,” Chemistry of Materials, vol. 16, no. 23, pp. 4647–4656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kietzke, H.-H. Hörhold, and D. Neher, “Efficient polymer solar cells based on M3EH-PPV,” Chemistry of Materials, vol. 17, no. 26, pp. 6532–6537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. G. Manoj, A. A. Alagiriswamy, and K. S. Narayan, “Photogenerated charge carrier transport in p-polymer n-polymer bilayer structures,” Journal of Applied Physics, vol. 94, no. 6, pp. 4088–4095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Geng and T. Zeng, “Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices,” Journal of the American Chemical Society, vol. 128, no. 51, pp. 16827–16833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Karim, C. J. Lee, Y.-T. Park, and M. S. Lee, “SWNTs coated by conducting polyaniline: synthesis and modified properties,” Synthetic Metals, vol. 151, no. 2, pp. 131–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. P. Shaffer and K. Koziol, “Polystyrene grafted multi-walled carbon nanotubes,” Chemical Communications, no. 18, pp. 2074–2075, 2002. View at Google Scholar · View at Scopus
  15. M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, “Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 779–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. I. C. Liu, H. M. Huang, C. Y. Chang, H. C. Tsai, C. H. Hsu, and R. C. C. Tsiang, “Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene,” Macromolecules, vol. 37, no. 2, pp. 283–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Karim, C. J. Lee, A. M. S. Chowdhury, N. Nahar, and M. S. Lee, “Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites,” Materials Letters, vol. 61, no. 8-9, pp. 1688–1692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kong, C. Gao, and D. Yan, “Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization,” Journal of the American Chemical Society, vol. 126, no. 2, pp. 412–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Zhao, H. Hu, and R. C. Haddon, “Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer,” Advanced Functional Materials, vol. 14, no. 1, pp. 71–76, 2004. View at Google Scholar · View at Scopus
  20. M. R. Karim, C. J. Lee, and M. S. Lee, “Synthesis and characterization of conducting polythiophene/carbon nanotubes composites,” Journal of Polymer Science A, vol. 44, no. 18, pp. 5283–5290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Bolognesi, W. Porzio, A. Provasoli et al., “Structural and thermal behavior of poly-(3-octylthiophene): a DSC,  13C MAS NMR, XRD, photoluminescence, and Raman scattering study,” Macromolecular Chemistry and Physics, vol. 202, no. 12, pp. 2586–2591, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Chen and J. M. Ni, “Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkylthiophene)s,” Macromolecules, vol. 25, no. 23, pp. 6081–6089, 1992. View at Google Scholar · View at Scopus
  23. T. Shiga and A. Okada, “Electroplastic behavior of doped poly(3-hexylthiophene),” Journal of Applied Polymer Science, vol. 62, no. 6, pp. 903–910, 1996. View at Google Scholar · View at Scopus
  24. K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, and K. Yoshino, “Structure and thermochromic solid-state phase transition of poly(3-alkylthiophene),” Journal of Polymer Science B, vol. 29, no. 10, pp. 1223–1233, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Mårdalen, E. J. Samuelsen, O. R. Gautun, and P. H. Carlsen, “Chain configuration of poly(3-hexylthiophene) as revealed by detailed X-ray diffraction studies,” Solid State Communications, vol. 77, no. 5, pp. 337–339, 1991. View at Google Scholar · View at Scopus
  26. W. P. Hsu, K. Levon, K. S. Ho, A. S. Myerson, and T. K. Kwei, “Side-chain order in poly(3-alkylthiophenes),” Macromolecules, vol. 26, no. 6, pp. 1318–1323, 1993. View at Google Scholar · View at Scopus
  27. R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, “Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures,” Carbon, vol. 39, no. 11, pp. 1681–1687, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Huang, N. Li, Y. Ma et al., “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites,” Carbon, vol. 45, no. 8, pp. 1614–1621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zhang, H. Zou, Q. Qing et al., “Effect of chemical oxidation on the structure of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 107, no. 16, pp. 3712–3718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Li, J. Zhang, Q. Li, H. Li, and Z. Liu, “Polymerization of short single-walled carbon nanotubes into large strands,” Carbon, vol. 41, p. 598, 2003. View at Google Scholar
  31. X. Yu, R. Rajamani, K. A. Stelson, and T. Cui, “Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology,” Surface and Coatings Technology, vol. 202, no. 10, pp. 2002–2007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Qiao, X. Wang, and Z. Mo, “Effects of different alkyl substitution on the structures and properties of poly(3-alkylthiophenes),” Synthetic Metals, vol. 118, no. 1–3, pp. 89–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Furukawa, M. Akimoto, and I. Harada, “Vibrational key bands and electrical conductivity of polythiophene,” Synthetic Metals, vol. 18, no. 1–3, pp. 151–156, 1987. View at Google Scholar · View at Scopus
  34. M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, and J. Pielichowski, “Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly(3-hexylthiophene),” Macromolecules, vol. 31, no. 15, pp. 5051–5058, 1998. View at Google Scholar · View at Scopus
  35. A. W. Musumeci, G. G. Silva, J. W. Liu, W. N. Martens, and E. R. Waclawik, “Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films,” Polymer, vol. 48, no. 6, pp. 1667–1678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. K. Kuila, S. Malik, S. K. Batabyal, and A. K. Nandi, “In-situ synthesis of soluble poly(3-hexylthiophene)/multiwalled carbon nanotube composite: morphology, structure, and conductivity,” Macromolecules, vol. 40, no. 2, pp. 278–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. L. Liu and W. H. Chen, “Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization,” Macromolecules, vol. 40, no. 25, pp. 8881–8886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. K. E. Wise, C. Park, E. J. Siochi, and J. S. Harrison, “Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions,” Chemical Physics Letters, vol. 391, no. 4–6, pp. 207–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. V. Ovsyannikova, O. N. Efimov, A. P. Moravsky, R. O. Loutfy, E. P. Krinichnaya, and N. M. Alpatova, “Electrochemical properties of thin-layered composites formed by carbon nanotubes and polybithiophene,” Russian Journal of Electrochemistry, vol. 41, no. 4, pp. 439–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Babel and S. A. Jenekhe, “Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s,” Synthetic Metals, vol. 148, no. 2, pp. 169–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Kymakis and G. A. J. Amaratunga, “Optical properties of polymer-nanotube composites,” Synthetic Metals, vol. 142, no. 1–3, pp. 161–167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck, and G. C. Walker, “Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers,” Journal of the American Chemical Society, vol. 124, no. 31, pp. 9034–9035, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Feng, A. Fujii, M. Ozaki, and K. Yoshino, “Perylene derivative sensitized multi-walled carbon nanotube thin film,” Carbon, vol. 43, no. 12, pp. 2501–2507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Colladet, S. Fourier, T. J. Cleij et al., “Low band gap donor-acceptor conjugated polymers toward organic solar cells applications,” Macromolecules, vol. 40, no. 1, pp. 65–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Mohammad, P. D. Calvert, and N. C. Billingham, “Electrical and electronic properties of polyparaphenylenes,” Journal of Physics D, vol. 29, no. 1, pp. 195–204, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Peng, “Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity,” Journal of the American Chemical Society, vol. 130, no. 1, pp. 42–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, “Dc and ac conductivity of carbon nanotubes-polyepoxy composites,” Macromolecules, vol. 36, no. 14, pp. 5187–5194, 2003. View at Publisher · View at Google Scholar · View at Scopus