Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 189279, 15 pages
http://dx.doi.org/10.1155/2012/189279
Research Article

Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor

1NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
2NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

Received 8 June 2012; Revised 24 August 2012; Accepted 29 August 2012

Academic Editor: Raymond L. D. Whitby

Copyright © 2012 Mohamad Hafiz Mamat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 5, pp. 930–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Xu, M. Dai, Y. Lu, and L. Sun, “Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells,” Journal of Physical Chemistry C, vol. 114, no. 6, pp. 2776–2782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. X. Zhou, J. X. Gao, and Z. L. Wu, “Materials and Devices research of PPV-ZnO Nanowires for heterojunction solar cells,” Journal of Nanomaterials, vol. 2012, Article ID 368236, 4 pages, 2012. View at Publisher · View at Google Scholar
  4. S. P. Chang and T. H. Chang, “Use of the thermal chemical vapor deposition to fabricate light-emitting diodes based on zno nanowire/p-GaN heterojunction,” , Journal of Nanomaterials, vol. 2011, Article ID 903176, 4 pages, 2011. View at Publisher · View at Google Scholar
  5. J. Singh, S. S. Patil, M. A. More, D. S. Joag, R. S. Tiwari, and O. N. Srivastava, “Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics,” Applied Surface Science, vol. 256, no. 21, pp. 6157–6163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. H. Mamat, Z. Khusaimi, M. F. Malik, M. M. Zahidi, and M. R. Mahmood, “Ultra-violet sensing characteristic and field emission properties of vertically aligned aluminum doped zinc oxide nanorod arrays,” in Proceedings of the International Conference on Enabling Science and Nanotechnology (ESciNano'10), Kuala Lumpur, Malaysia, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Moradi, P. A. Azar, S. R. Farshid, S. A. Khorrami, and M. H. Givianrad, “Effect of Additives on Characterization and Photocatalytic Activity of Tio2/ZnO Nanocomposite Prepared via Sol-Gel Process,” International Journal of Chemical Engineering, vol. 2012, Article ID 215373, 5 pages, 2012. View at Publisher · View at Google Scholar
  8. M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek, and M. Rusop, “Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods,” Sensors and Actuators, A, vol. 171, pp. 241–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Lupan, G. Chai, L. Chow et al., “Ultraviolet photoconductive sensor based on single ZnO nanowire,” Physica Status Solidi (A), vol. 207, no. 7, pp. 1735–1740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Jeong, K. S. Kim, Y. H. Kim et al., “A crossbar-type high sensitivity ultraviolet photodetector array based on a one hole—one nanorod configuration via nanoimprint lithography,” Nanotechnology, vol. 22, no. 27, Article ID 275310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Yuan, X. J. Zheng, Y. Q. Chen, B. Yang, and T. Zhang, “High photosensitivity and low dark current of photoconductive semiconductor switch based on ZnO single nanobelt,” Solid-State Electronics, vol. 55, no. 1, pp. 49–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee, and J. M. Myoung, “Fabrication of UV detectors based on ZnO nanowires using silicon microchannel,” Journal of Crystal Growth, vol. 311, no. 12, pp. 3305–3309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bera, T. Ghosh, and D. Basak, “Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn,” ACS Applied Materials and Interfaces, vol. 2, no. 10, pp. 2898–2903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Y. Chai, L. Chow, O. Lupan et al., “Fabrication and characterization of an individual ZnO microwire-based UV photodetector,” Solid State Sciences, vol. 13, no. 5, pp. 1205–1210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Rosina, P. Ferret, P. H. Jouneau et al., “Morphology and growth mechanism of aligned ZnO nanorods grown by catalyst-free MOCVD,” Microelectronics Journal, vol. 40, no. 2, pp. 242–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Fuge, T. M. S. Holmes, and M. N. R. Ashfold, “Ultrathin aligned ZnO nanorod arrays grown by a novel diffusive pulsed laser deposition method,” Chemical Physics Letters, vol. 479, no. 1–3, pp. 125–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. H. Mamat, Z. Khusaimi, M. M. Zahidi et al., “Controllable growth of vertically aligned aluminum-doped zinc oxide nanorod arrays by sonicated sol-gel immersion method depending on precursor solution volumes,” Japanese Journal of Applied Physics, vol. 50, no. 6, Article ID 06GH04, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, and M. Davoudian, “UV detecting properties of hydrothermal synthesized ZnO nanorods,” Physica E, vol. 43, no. 6, pp. 1141–1145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. Z. Sahdan, and M. Rusop, “Novel synthesis of aligned Zinc oxide nanorods on a glass substrate by sonicated sol-gel immersion,” Materials Letters, vol. 64, no. 10, pp. 1211–1214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi, and M. Rusop, “Properties of nanostructured zinc oxide by hydro-thermal aqueous chemical growth method,” in Proceedings of the International Conference on Nanoscience and Nanotechnology (Nano-SciTech'08), pp. 586–590, Selangor, Malaysia, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Bera and D. Basak, “Pd-nanoparticle-decorated ZnO nanowires: ultraviolet photosensitivity and photoluminescence properties,” Nanotechnology, vol. 22, no. 26, Article ID 265501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bera and D. Basak, “Effect of surface capping with poly(vinyl alcohol) on the photocarrier relaxation of ZnO nanowires.,” ACS applied materials & interfaces, vol. 1, no. 9, pp. 2066–2070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Qin, C. Shing, S. Sawyer, and P. S. Dutta, “Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation,” Optical Materials, vol. 33, no. 3, pp. 359–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Chantarat, Y. W. Chen, S. Y. Chen, and C. C. Lin, “Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes,” Nanotechnology, vol. 20, no. 39, Article ID 395201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Angadi, H. C. Park, H. W. Choi, J. W. Choi, and W. K. Choi, “Oxygen plasma treated epitaxial ZnO thin films for Schottky ultraviolet detection,” Journal of Physics D, vol. 40, no. 5, article no. 016, pp. 1422–1425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Materials Letters, vol. 63, no. 28, pp. 2516–2519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Park, G. Jo, W. K. Hong et al., “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology, vol. 22, no. 20, Article ID 205204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Chang, R. W. Chuang, S. J. Chang, C. Y. Lu, Y. Z. Chiou, and S. F. Hsieh, “Surface HCl treatment in ZnO photoconductive sensors,” Thin Solid Films, vol. 517, no. 17, pp. 5050–5053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Byrne, E. McGlynn, M. O. Henry, K. Kumar, and G. Hughes, “A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays,” Thin Solid Films, vol. 518, no. 16, pp. 4489–4492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. G. G. Maffeis, M. W. Penny, A. Castaing, O. J. Guy, and S. P. Wilks, “XPS investigation of vacuum annealed vertically aligned ultralong ZnO nanowires,” Surface Science, vol. 606, pp. 99–103, 2012. View at Publisher · View at Google Scholar
  31. M. Z. Sahdan, M. H. Mamat, M. Salina, Z. Khusaimi, U. M. Noor, and M. Rusop, “Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures,” Physica Status Solidi C, vol. 7, no. 9, pp. 2286–2289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Dhara and P. Giri, “Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires,” Nanoscale Research Letters, vol. 6, p. 504, 2011. View at Publisher · View at Google Scholar
  33. K.-P. Kim, D. Chang, S. K. Lim, S. K. Lee, H. K. Lyu, and D. K. Hwang, “Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network,” Current Applied Physics, vol. 11, pp. 1311–1314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek, and M. Rusop, “Ultraviolet sensing mechanism and characteristics of environmentally friendly aligned aluminium doped zinc oxide nanorod arrays prepared using low cost solution growth method,” Materials Research Innovations, vol. 15, p. s148, 2011. View at Google Scholar
  35. H. Zhou, G.-J. Fang, N. Liu, and X. Z. Zhao, “Effects of thermal annealing on the performance of Al/ZnO nanorods/Pt structure ultraviolet photodetector,” Materials Science and Engineering B, vol. 176, no. 9, pp. 740–744, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdullah, and M. Rusop, “Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications,” Optical Materials, vol. 32, no. 6, pp. 696–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Qiu, Z. Ye, J. Lu et al., “Growth and properties of ZnO nanorod and nanonails by thermal evaporation,” Applied Surface Science, vol. 255, no. 7, pp. 3972–3976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. M. Kwok, A. B. Djurišić, Y. H. Leung et al., “Influence of annealing on stimulated emission in ZnO nanorods,” Applied Physics Letters, vol. 89, no. 18, Article ID 183112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, and R. G. Copeland, “Luminescent properties of solution-grown ZnO nanorods,” Applied Physics Letters, vol. 88, no. 25, Article ID 252103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zhang and W. Que, “Preparation and characterization of solgel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2181–2186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. K. Patra, K. Manzoor, M. Manoth, S. R. Vadera, and N. Kumar, “Studies of luminescence properties of ZnO and ZnO:Zn nanorods prepared by solution growth technique,” Journal of Luminescence, vol. 128, no. 2, pp. 267–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Xie, T. Sekiguchi, T. Ishigaki et al., “Enhancement and patterning of ultraviolet emission in ZnO with an electron beam,” Applied Physics Letters, vol. 88, no. 13, Article ID 134103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Z.-M. Liao, H. Z. Zhang, Y. B. Zhou, J. Xu, J. M. Zhang, and D. P. Yu, “Surface effects on photoluminescence of single ZnO nanowires,” Physics Letters, Section A, vol. 372, no. 24, pp. 4505–4509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Lee, J. Chung, and S. Lim, “Improvement of optical properties of post-annealed ZnO nanorods,” Physica E, vol. 42, no. 8, pp. 2143–2146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. H. Leung, A. B. Djurišić, Z. T. Liu, D. Li, M. H. Xie, and W. K. Chan, “Defect photoluminescence of ZnO nanorods synthesized by chemical methods,” Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 353–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Wang and N. Reynolds, “Photoluminescence of Zinc Oxide nanowires: the effect of surface band bending,” ISRN Condensed Matter Physics, vol. 2012, Article ID 950354, 6 pages, 2012. View at Publisher · View at Google Scholar
  47. T. Ghosh and D. Basak, “Highly enhanced ultraviolet photoresponse property in Cu-doped and Cu-Li co-doped ZnO films,” Journal of Physics D, vol. 42, no. 14, Article ID 145304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Li, G. Xing, L. F. N. Ah Qune et al., “Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps,” Physical Chemistry Chemical Physics, vol. 14, pp. 3075–3082, 2012. View at Google Scholar
  49. J. H. Jun, H. Seong, K. Cho, B. M. Moon, and S. Kim, “Ultraviolet photodetectors based on ZnO nanoparticles,” Ceramics International, vol. 35, no. 7, pp. 2797–2801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Mridha, M. Nandi, A. Bhaumik, and D. Basak, “A novel and simple approach to enhance ultraviolet photosensitivity: activated-carbon-assisted growth of ZnO nanoparticles,” Nanotechnology, vol. 19, no. 27, Article ID 275705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Bera and D. Basak, “Role of defects in the anomalous photoconductivity in ZnO nanowires,” Applied Physics Letters, vol. 94, no. 16, Article ID 163119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nanotechnology, vol. 20, no. 1, Article ID 015601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. F. Lotus, Y. C. Kang, J. I. Walker, R. D. Ramsier, and G. G. Chase, “Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning,” Materials Science and Engineering B, vol. 166, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. C.-H. Hsu and D.-H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology, vol. 21, no. 28, Article ID 285603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Mridha and D. Basak, “Aluminium doped ZnO films: electrical, optical and photoresponse studies,” Journal of Physics D, vol. 40, no. 22, pp. 6902–6907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. B. K. Sharma and N. Khare, “Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films,” Journal of Physics D, vol. 43, no. 46, Article ID 465402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. X. G. Zheng, Q. S. Li, J. P. Zhao et al., “Photoconductive ultraviolet detectors based on ZnO films,” Applied Surface Science, vol. 253, no. 4, pp. 2264–2267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Liu, Y. B. Xia, L. J. Wang, Q. F. Su, and W. M. Shi, “Effect of grain size on the electrical properties of ultraviolet photodetector with ZnO/diamond film structure,” Journal of Crystal Growth, vol. 300, no. 2, pp. 353–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire photodetectors,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 1430–1449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Sheng-Po, L. Chien-Yuan, C. Shoou-Jinn, C. Yu-Zung, H. Ting-Jen, and H. Cheng-Liang, “Electrical and optical characteristics of UV photodetector with interlaced ZnO nanowires,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, pp. 990–995, 2011. View at Publisher · View at Google Scholar