Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 192456, 8 pages
http://dx.doi.org/10.1155/2012/192456
Research Article

Evaluation of CdS Interfacial Layers in ZnO Nanowire/Poly(3-Hexylthiophene) Solar Cells

The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA

Received 26 February 2012; Accepted 17 April 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 John W. Murphy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zhou, N. Xu, and Z. L. Wang, “Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures,” Advanced Materials, vol. 18, no. 18, pp. 2432–2435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ohyama, H. Kozuka, and T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution,” Thin Solid Films, vol. 306, no. 1, pp. 78–85, 1997. View at Google Scholar · View at Scopus
  3. L. E. Greene, M. Law, J. Goldberger et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie—International Edition, vol. 42, no. 26, pp. 3031–3034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Letters, vol. 8, no. 9, pp. 2638–2642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Lu and C. Gang, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Letters, vol. 7, no. 11, pp. 3249–3252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Ko, D. Lee, H. W. Kang et al., “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Letters, vol. 11, no. 2, pp. 666–671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Chang, C. Y. Lu, S. J. Chang et al., “A novel fabrication of p-n diode based on ZnO nanowire/p-NiO heterojunction,” Japanese Journal of Applied Physics, vol. 50, no. 1, Article ID 01AJ05, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” Journal of the American Chemical Society, vol. 131, no. 10, pp. 3756–3761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Cheng, T. L. Wang, L. Feng et al., “Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays,” Nanotechnology, vol. 21, no. 47, Article ID 475703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. H. Li, P. Y. Yang, S. M. Chiou, H. W. Liu, and H. C. Cheng, “A novel coaxial-structured amorphous-silicon p-i-n solar cell with Al-doped ZnO nanowires,” IEEE Electron Device Letters, vol. 32, no. 7, pp. 928–930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Olson, Y. J. Lee, M. S. White et al., “Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices,” Journal of Physical Chemistry C, vol. 111, no. 44, pp. 16640–16645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, and M. Chhowalla, “Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films,” Journal of Materials Chemistry, vol. 18, no. 48, pp. 5909–5912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Y. Lin, Y. Y. Lee, L. Chang, J. J. Wu, and C. W. Chen, “The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells,” Applied Physics Letters, vol. 94, no. 6, Article ID 063308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, “ZnO—TiO2 core—shell nanorod/P3HT solar cells,” Journal of Physical Chemistry C, vol. 111, no. 50, pp. 18451–18456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Atienzar, T. Ishwara, B. N. Illy et al., “Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer,” Journal of Physical Chemistry Letters, vol. 1, no. 4, pp. 708–713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y. J. Lee, and J. W. P. Hsu, “Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide,” Applied Physics Letters, vol. 95, no. 21, Article ID 213506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. E. Greene, M. Law, D. H. Tan et al., “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Letters, vol. 5, no. 7, pp. 1231–1236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sotelo-Lerma, M. A. Quevedo-López, R. A. Orozco-Terán, R. Ramírez-Bon, and F. J. Espinoza-Beltrán, “Characterization of CdS-NaX composite material synthesized in alkaline solution,” Journal of Physics and Chemistry of Solids, vol. 59, no. 2, pp. 145–149, 1998. View at Google Scholar · View at Scopus
  20. A. L. Salas-Villasenor, I. Mejia, J. Hovarth et al., “Impact of gate dielectric in carrier mobility in low temperature chalcogenide thin film transistors for flexible electronics,” Electrochemical and Solid-State Letters, vol. 13, no. 9, pp. H313–H316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. D. Spoerke, M. T. Lloyd, Y. J. Lee et al., “Nanocrystal layer deposition: surface-mediated templating of cadmium sulfide nanocrystals on zinc oxide architectures,” Journal of Physical Chemistry C, vol. 113, no. 37, pp. 16329–16336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, “Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles,” Advanced Functional Materials, vol. 16, no. 8, pp. 1112–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, “The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices,” Journal of Physical Chemistry C, vol. 111, no. 44, pp. 16670–16678, 2007. View at Publisher · View at Google Scholar · View at Scopus