Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 193704, 6 pages
http://dx.doi.org/10.1155/2012/193704
Research Article

Therapeutic Angiogenesis of PLGA-Heparin Nanoparticle in Mouse Ischemic Limb

Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China

Received 11 January 2012; Revised 12 April 2012; Accepted 13 April 2012

Academic Editor: Haifeng Chen

Copyright © 2012 Lishan Lian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. He, Y. Jiang, J. Wang, L. Fan, X. Li, and F. B. Hu, “Prevalence of peripheral arterial disease and its association with smoking in a population-based study in Beijing, China,” Journal of Vascular Surgery, vol. 44, no. 2, pp. 333–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. H. Kusumanto, V. Van Weel, N. H. Mulder et al., “Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial,” Human Gene Therapy, vol. 17, no. 6, pp. 683–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Cristofaro, O. A. Stone, A. Caporali et al., “Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 6, pp. 1143–1150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Zhou, Y. H. Yang, N. O. Binmadi et al., “The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma,” Experimental Cell Research. In press.
  5. M. Sobel and R. Verhaeghe, “Antithrombotic therapy for peripheral artery occlusive disease: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition),” Chest, vol. 133, no. 6, pp. 815S–843S, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Kearon, S. R. Kahn, G. Agnelli, S. Goldhaber, G. E. Raskob, and A. J. Comerota, “Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition),” Chest, vol. 133, no. 6, pp. 454S–545S, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Norgren, W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris, and F. G. R. Fowkes, “Inter-Society consensus for the management of peripheral arterial disease (TASC II),” European Journal of Vascular and Endovascular Surgery, vol. 33, pp. S32–S53, 2007. View at Google Scholar
  8. D. A. Lane, “Heparin binding and neutralizing protein,” in Heparin: Chemical and Biological Properties, Clinical Applications, D. A. Lane and U. Lindahl, Eds., pp. 363–391, CRC Press, Boca Raton, Fla, USA, 1989. View at Google Scholar
  9. R. D. Rosenberg and L. Lam, “Correlation between structure and function of heparin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 3, pp. 1218–1222, 1979. View at Google Scholar · View at Scopus
  10. J. Hirsh, T. E. Warkentin, S. G. Shaugnessy et al., “Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy and safety,” Chest, vol. 119, supplement, pp. 64S–94S, 2001. View at Google Scholar
  11. M. Stern, K. Ulrich, D. M. Geddes, and E. W. F. W. Alton, “Poly (D, L-lactide-co-glycolide)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo,” Gene Therapy, vol. 10, no. 16, pp. 1282–1288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. W. Kang, H. W. Lim, S. W. Seo, O. Jeon, M. Lee, and B. S. Kim, “Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs,” Biomaterials, vol. 29, no. 8, pp. 1109–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Jeon, S. W. Kang, H. W. Lim, J. Hyung Chung, and B. S. Kim, “Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel,” Biomaterials, vol. 27, no. 8, pp. 1598–1607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Yang, C. Song, Y. Li et al., “Polymeric Particles with therapeutic gene for gene therapy: preparation and in vivo gene transfer study,” BioMedical Engineering, vol. 22, no. 3, pp. 438–442, 2005. View at Google Scholar
  15. Y. Lemmouchi, E. Schacht, P. Kageruka et al., “Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies,” Biomaterials, vol. 19, no. 20, pp. 1827–1837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Jain, “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices,” Biomaterials, vol. 21, no. 23, pp. 2475–2490, 2000. View at Google Scholar · View at Scopus
  17. X. Liu, J. Yang, C. Zhou et al., “Constructing hybrid films of conjugated oligomers and gold nanoparticles for efficient photoeletronic properties,” Physical Chemistry Chemical Physics, vol. 13, no. 6, pp. 1984–1989, 2011. View at Google Scholar
  18. A. Lamprecht, N. Ubrich, M. Hombreiro Pérez, C. M. Lehr, M. Hoffman, and P. Maincent, “Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification,” International Journal of Pharmaceutics, vol. 184, no. 1, pp. 97–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner, “Mouse model of angiogenesis,” American Journal of Pathology, vol. 152, no. 6, pp. 1667–1679, 1998. View at Google Scholar · View at Scopus
  20. D. R. Kalaria, G. Sharma, V. Beniwal, and M. N. V. Ravi Kumar, “Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats,” Pharmaceutical Research, vol. 26, no. 3, pp. 492–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Sameni, N. I. Bukhari, N. A. Azlan, T. Julianto, and A. B. A. Majeed, “The effect of preparation parameters on the size and morphology of PLGA-based nanoparticles,” in Proceedings of the IEEE Symposium on Industrial Electronics and Applications (ISIEA '09), pp. 700–704, Kuala Lumpur, Malaysia, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Lv, Y. Zhao, G. Li et al., “Aggregation-enhanced emission in gold nanoparticles protected by tetradentate perylene derivative,” Langmuir, vol. 25, no. 19, pp. 11351–11357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. T. Rissanen, I. Vajanto, M. O. Hiltunen et al., “Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Fik-1) in ischemic skeletal muscle and its regeneration,” American Journal of Pathology, vol. 160, no. 4, pp. 1393–1403, 2002. View at Google Scholar · View at Scopus
  24. R. Zarnegar and G. K. Michalopoulos, “The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis,” Journal of Cell Biology, vol. 129, no. 5, pp. 1177–1180, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Madonna, C. Cevik, M. Nasser et al., “Hepatocyte growth factor: molecular biomarker and player in cardioprotection and cardiovascular regeneration,” Thrombosis and Haemostasis, vol. 107, no. 4, pp. 656–661, 2012. View at Google Scholar
  26. R. Morishita, H. Makino, M. Aoki et al., “Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 3, pp. 713–720, 2011. View at Publisher · View at Google Scholar · View at Scopus