Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 198973, 6 pages
http://dx.doi.org/10.1155/2012/198973
Research Article

Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

1Department of Chemistry, Faculty of Science, Islamic Azad University, Islamshahr Branch, Tehran, Iran
2Young Researchers Club, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Received 24 January 2012; Revised 17 March 2012; Accepted 31 March 2012

Academic Editor: Yi Du

Copyright © 2012 Seyed Hossein Hosseini and Ahmad Asadnia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Zhang, Q. Li, and Y. Ye, “Preparation and characterization of polypyrrole/nano-SrFe12O19 composites by in situ polymerization method,” Synthetic Metals, vol. 159, no. 11, pp. 1008–1013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. T. Truong, S. Z. Riddell, and R. F. Muscat, “Polypyrrole based microwave absorbers,” Journal of Materials Science, vol. 33, no. 20, pp. 4971–4976, 1998. View at Google Scholar · View at Scopus
  3. B. Birsöz, A. Baykal, H. Sözeri, and M. S. Toprak, “Synthesis and characterization of polypyrrole-BaFe12O19 nanocomposite,” Journal of Alloys and Compounds, vol. 493, no. 1-2, pp. 481–485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, and G. Kordas, “Microwave behavior of ferrites prepared via sol-gel method,” Journal of Magnetism and Magnetic Materials, vol. 246, no. 3, pp. 360–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sugimoto, K. Haga, T. Kagotani, and K. Inomata, “Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method,” Journal of Magnetism and Magnetic Materials, vol. 290-291, pp. 1188–1191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Tabatabaie, M. H. Fathi, A. Saatchi, and A. Ghasemi, “Microwave absorption properties of Mn- and Ti-doped strontium hexaferrite,” Journal of Alloys and Compounds, vol. 470, no. 1-2, pp. 332–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Xiao, X. M. Liu, and S. Y. Fu, “Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites,” Composites Science and Technology, vol. 66, no. 13, pp. 2003–2008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Hosseini, S. H. Mohseni, A. Asadnia, and H. Kerdari, “Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite,” Journal of Alloys and Compounds, vol. 509, no. 14, pp. 4682–4687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, Z. Huang, F. Tang, and J. Ren, “Ferrite hollow spheres with tunable magnetic properties,” Thin Solid Films, vol. 515, no. 4, pp. 2555–2561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Mu, N. Chen, X. Pan, H. Shen, and M. Gu, “Preparation and microwave absorption properties of barium ferrite nanorods,” Materials Letters, vol. 62, no. 6-7, pp. 840–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. Bueno, M. L. Gregori, and M. C. S. Nóbrega, “Microwave-absorbing properties of Ni0.50-xZn0.50-xMe2xFe2O4 (Me 1/4 Cu, Mn, Mg) ferrite-wax composite in X-band frequencies,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 6, pp. 864–870, 2008. View at Publisher · View at Google Scholar · View at Scopus