Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 239182, 8 pages
http://dx.doi.org/10.1155/2012/239182
Research Article

Particle Size Effect on TL Emission of ZnS Nanoparticles and Determination of Its Kinetic Parameters

1Department of Physics, Mizoram University, P U College, Aizawl 796 001, India
2Department of Nanotechnology, North-Eastern Hill University, Shillong 793 002, India
3Department of Physics, Manipur University, Manipur 795 003, Canchipur, India

Received 17 March 2012; Accepted 3 May 2012

Academic Editor: Leonard Deepak Francis

Copyright © 2012 L. Robindro Singh and S. Dorendrajit Singh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Balandin, K. L. Wang, N. Kouklin, and S. Bandyopadhyay, “Raman spectroscopy of electrochemically self-assembled CdS quantum dots,” Applied Physics Letters, vol. 76, no. 2, pp. 137–140, 2000. View at Google Scholar · View at Scopus
  2. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, “Optical properties of manganese-doped nanocrystals of ZnS,” Physical Review Letters, vol. 72, no. 3, pp. 416–419, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. L. E. Brus, “Zero dimensional “excitons” in semiconductor clusters IEEE,” Journal of Quantum Electronics, vol. 22, no. 9, pp. 1909–1926, 1986. View at Google Scholar
  4. N. Taghavinia and T. Yao, “ZnS nanocrystals embedded in SiO2 matrix,” Physica E, vol. 21, no. 1, pp. 96–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Natan, J. W. Thackeray, and M. S. Wrighton, “Interaction of thiols with n-type cadmium sulfide and n-type cadmium selenide in aqueous solutions: adsorption of thiolate anion and efficient photoelectrochemical oxidation to disulfides,” Journal of Physical Chemistry, vol. 90, no. 17, pp. 4089–4098, 1986. View at Google Scholar · View at Scopus
  6. M. Ihara, T. Igarashi, T. Kusunoki, and K. Ohno, “Cathodoluminescence and photoluminescence of nanocrystal phosphors,” Journal of the Electrochemical Society, vol. 149, no. 3, pp. H72–H75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Bol and A. Meijerink, “Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+,” Physical Review B, vol. 58, no. 24, pp. R15997–R16000, 1998. View at Google Scholar · View at Scopus
  8. W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected, surface-oxidized silicon nanocrystals,” Science, vol. 262, no. 5137, pp. 1242–1244, 1993. View at Google Scholar · View at Scopus
  9. R. S. Ningthoujam, V. Sudarsan, S. V. Godbole, L. Kienle, S. K. Kulshreshtha, and A. K. Tyagi, “Sn O2:Eu3+ nanoparticles dispersed in TiO2 matrix: improved energy transfer between semiconductor host and Eu3+ ions for the low temperature synthesized samples,” Applied Physics Letters, vol. 90, no. 17, Article ID 173113, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Advances in Physics, vol. 42, no. 2, pp. 173–266, 1993. View at Google Scholar · View at Scopus
  11. A. P. Alivisatos, “Semiconductor nanocrystals,” MRS Bulletin, vol. 20, no. 8, pp. 23–32, 1995. View at Google Scholar · View at Scopus
  12. C. C. Yang, S. Y. Cheng, H. Y. Lee, and S. Y. Chen, “Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents,” Ceramics International, vol. 32, no. 1, pp. 37–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Lomascolo, A. Cretì, G. Leo, L. Vasanelli, and L. Manna, “Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals,” Applied Physics Letters, vol. 82, no. 3, article 418, 3 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Karar, F. Singh, B. R. Mehata et al., “Structure and Photoluminescence studies on ZnS:Mn nanopaticles,” Journal of Applied Physics, vol. 95, no. 2, pp. 656–661, 2004. View at Google Scholar
  15. K. K. Nanda and S. N. Sahu, “Photoluminescence of CdS nanocrystals: effect of ageing,” Solid State Communications, vol. 111, no. 12, pp. 671–674, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. B. A. Smith, J. Z. Zhang, A. Joly, and J. Liu, “Luminescence decay kinetics of Mn2+-doped ZnS nanoclusters grown in reverse micelles,” Physical Review B, vol. 62, no. 3, pp. 2021–2028, 2000. View at Google Scholar · View at Scopus
  17. I. V. Kityk, M. Makowska-Janusik, J. Ebothé, A. El Hichou, B. El Idrissi, and M. Addou, “Photoinduced non-linear optical effects in the ZnS-Al, In-Sn doped film-glass nanometer-sized interfaces,” Applied Surface Science, vol. 202, no. 1-2, pp. 24–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS:Cu2+,” Journal of Luminescence, vol. 99, no. 4, pp. 325–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Xu, X. Huang, H. Huang, H. Chen, J. Xu, and K. Chen, “Surface modification and enhancement of luminescence due to quantum effects in coated CdSe/CuSe semiconductor nanocrystals,” Japanese Journal of Applied Physics, Part 1, vol. 37, no. 6, pp. 3491–3494, 1998. View at Google Scholar · View at Scopus
  20. S. L. Cumberland, K. M. Hanif, A. Javier et al., “Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials,” Chemistry of Materials, vol. 14, no. 4, pp. 1576–1584, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Benisty, C. M. Sotomayor-Torrès, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Physical Review B, vol. 44, no. 19, pp. 10945–10948, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. J. F. Suyver, R. Bakker, A. Meijerink, J. J. Kelly et al., “Photoelectrochemical characterization of nanocrystalline ZnS:Mn2+ layer,” Physica Status Solidi, vol. 224, no. 1, pp. 307–312, 2001. View at Google Scholar
  23. W. Chen, Z. Wang, Z. Lin, and L. Lin, “Absorption and luminescence of the surface states in ZnS nanoparticles,” Journal of Applied Physics, vol. 82, no. 6, pp. 3111–3115, 1997. View at Google Scholar · View at Scopus
  24. S. J. Dhoble, P. M. Bhujbal, N. S. Dhoble, and S. V. Moharil, “Lyoluminescence, thermoluminescence and photodecomposition in microcrystalline powder of KCl, KBr, KI and KI:KNO3 crystals,” Nuclear Instruments and Methods in Physics Research, Section B, vol. 192, no. 3, pp. 280–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Sharma, D. P. Bisen, S. J. Dhoble, N. Brahme, and B. P. Chandra, “Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals,” Journal of Luminescence, vol. 131, no. 10, pp. 2089–2092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Jagannatha Reddy, M. K. Kokila, H. Nagabhushana et al., “Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles,” Spectrochimica Acta—Part A, vol. 133, no. 2-3, pp. 876–883, 2011. View at Publisher · View at Google Scholar
  27. A. N. Yazici, M. Öztaş, and M. Bedir, “The thermoluminescence properties of copper doped ZnS nanophosphor,” Optical Materials, vol. 29, no. 8, pp. 1091–1096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. B. de Carvalho Jr., P. L. Guzzob, H. L. Sullasic, H. J. Khouryd et al., “Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments,” Materials Research, vol. 13, no. 2, pp. 265–271, 2010. View at Publisher · View at Google Scholar
  29. A. N. Yazici, M. Öztaş, and M. Bedir, “Effect of sample producing conditions on the thermoluminescence properties of ZnS thin films developed by spray pyrolysis method,” Journal of Luminescence, vol. 104, no. 1-2, pp. 115–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. G. F. J. Garlick and A. F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proceedings of the Physical Society, vol. 60, no. 6, pp. 574–590, 1948. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Mahajna and Y. S. Horowitz, “The unified interaction model applied to the gamma ray induced supralinearity and sensitization of peak 5 in LiF:Mg,Ti (TLD-100),” Journal of Physics D, vol. 30, no. 18, pp. 2603–2619, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. R. K. Gartia, S. J. Singh, T. S. C. Singh, and P. S. Mazumdar, “On the peak shape method for the determination of activation energy in TSL and TSC,” Journal of Physics D, vol. 26, no. 4, pp. 694–696, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. L. R. Singh, R. S. Ningthoujam, and S. D. Singh, “Tuning of ultra-violet to green emission by choosing suitable excitation wavelength in ZnO: quantum dot, nanocrystals and bulk,” Journal of Alloys and Compounds, vol. 487, no. 1-2, pp. 466–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Robindro Singh, R. S. Ningthoujam, V. Sudarsan et al., “Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects,” Nanotechnology, vol. 19, no. 5, Article ID 055201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. T. Randall and M. H. F. Wilkins, “The phosphorescence of Various solids,” MHF, vol. 184, no. 999, pp. 347–367, 1945. View at Google Scholar
  36. R. G. Gartia, S. D. Singh, and P. S. Mazumdar, “On the glow curve shape and plateau test: the case of non-first-order kinetics,” Physica Status Solidi, vol. 138, no. 1, pp. 319–326, 1993. View at Publisher · View at Google Scholar
  37. M. S. Rasheedy, “On the general-order kinetics of the thermoluminescence glow peak,” Journal of Physics, vol. 5, no. 5, pp. 633–636, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Process, Pergamon, Oxford, UK, 1981.
  39. R. K. Gartia, S. J. Singh, and P. S. Mazumdar, “Determination of the activation energy of thermally stimulated luminescence peaks obeying general-order kinetics,” Physica Status Solidi (A), vol. 114, no. 1, pp. 407–411, 1989. View at Google Scholar · View at Scopus