Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 401084, 6 pages
http://dx.doi.org/10.1155/2012/401084
Research Article

In Vitro Biocompatibility and Osteoblast Differentiation of an Injectable Chitosan/Nano-Hydroxyapatite/Collagen Scaffold

1Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
2School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
3Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
4Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
5State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China

Received 28 February 2012; Accepted 3 April 2012

Academic Editor: Shuming Zhang

Copyright © 2012 Yan Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update,” Injury, supplement 36, pp. S20–S27, 2005. View at Google Scholar · View at Scopus
  2. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar · View at Scopus
  3. R. Cancedda, B. Dozin, P. Giannoni, and R. Quarto, “Tissue engineering and cell therapy of cartilage and bone,” Matrix Biology, vol. 22, no. 1, pp. 81–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Hutmacher, J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 4, pp. 245–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Di Martino, M. Sittinger, and M. V. Risbud, “Chitosan: a versatile biopolymer for orthopaedic tissue-engineering,” Biomaterials, vol. 26, no. 30, pp. 5983–5990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Elder, D. L. Nettles, and J. D. Bumgardner, “Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering,” Methods in Molecular Biology, vol. 238, pp. 41–48, 2004. View at Google Scholar · View at Scopus
  7. Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, “Chitosan-alginate hybrid scaffolds for bone tissue engineering,” Biomaterials, vol. 26, no. 18, pp. 3919–3928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Mukherjee, A. S. Tunkle, R. A. Roberts, A. Clavenna, S. Rogers, and D. Smith, “An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material,” Journal of Biomedical Materials Research, vol. 67, no. 1, pp. 603–609, 2003. View at Google Scholar · View at Scopus
  9. L. Kong, Y. Gao, W. Cao, Y. Gong, N. Zhao, and X. Zhang, “Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds,” Journal of Biomedical Materials Research, vol. 75, no. 2, pp. 275–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Chesnutt, A. M. Viano, Y. Yuan et al., “Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration,” Journal of Biomedical Materials Research, vol. 88, no. 2, pp. 491–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, “Preparation and antibacterial activity of chitosan nanoparticles,” Carbohydrate Research, vol. 339, no. 16, pp. 2693–2700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. F. Stevens, “Chitosan membrane as a wound-healing dressing: characterization and clinical application,” Journal of Biomedical Materials Research, vol. 69, no. 2, pp. 216–222, 2004. View at Google Scholar · View at Scopus
  13. X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Li, H. Liu, X. Niu et al., “Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics,” Journal of Biomedical Materials Research, vol. 97, no. 1, pp. 10–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. X. M. Li, X. H. Liu, M. Uo, Q. L. Feng, F. Z. Cui, and F. Watari, “Investigation on the mechanism of the osteoinduction for calcium phosphate,” Bone, vol. 43, pp. 111–112, 2008. View at Google Scholar
  16. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Li, H. Gao, M. Uo et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research, vol. 91, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Li, H. Gao, M. Uo et al., “Maturation of osteoblast-like SaoS2 induced by carbon nanotubes,” Biomedical Materials, vol. 4, no. 1, Article ID 015005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Li, Y. Fan, and F. Watari, “Current investigations into carbon nanotubes for biomedical application,” Biomedical Materials, vol. 5, no. 2, Article ID 022001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Li, X. Liu, J. Huang, Y. Fan, and F. Z. Cui, “Biomedical investigation of CNT based coatings,” Surface and Coatings Technology, vol. 206, no. 4, pp. 759–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Li, Q. Feng, and F. Cui, “In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres,” Materials Science and Engineering C, vol. 26, no. 4, pp. 716–720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X. M. Li, X. H. Liu, G. P. Zhang et al., “Repairing 25 mm bone defect using fibres reinforced scaffolds as well as autograft bone,” Bone, vol. 43, p. 94, 2008. View at Google Scholar
  23. X. M. Li, H. F. Liu, X. F. Niu et al., “The use of carbon nanotubes v to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials. In press.
  24. Z. Huang, J. Tian, B. Yu, Y. Xu, and Q. Feng, “A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold,” Biomedical Materials, vol. 4, no. 5, Article ID 055005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Huang, Q. Feng, B. Yu, and S. Li, “Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/ collagen composite,” Materials Science and Engineering C, vol. 31, no. 3, pp. 683–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Huang, B. Yu, Q. Feng, S. Li, Y. Chen, and L. Luo, “In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells,” Carbohydrate Polymers, vol. 85, no. 1, pp. 261–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Huang, Y. Chen, Q. L. Feng et al., “In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells,” Frontiers of Materials Science, vol. 5, no. 3, pp. 301–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Wang, S. Zhang, X. Zeng, L. M. Lwin, A. K. Khiam, and M. Qian, “Initial attachment of osteoblastic cells onto sol-gel derived fluoridated hydroxyapatite coatings,” Journal of Biomedical Materials Research, vol. 84, no. 3, pp. 769–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Jalota, S. B. Bhaduri, and A. C. Tas, “In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers,” Journal of Biomedical Materials Research, vol. 78, no. 3, pp. 481–490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Clarke, N. L. Hoskins, G. R. Jordan, S. A. Henderson, and D. R. Marsh, “In vitro testing of Advanced JAX Bone Void Filler System: species differences in the response of bone marrow stromal cells to β tri-calcium phosphate and carboxymethylcellulose gel,” Journal of Materials Science, vol. 18, no. 12, pp. 2283–2290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Att, N. Hori, M. Takeuchi et al., “Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials,” Biomaterials, vol. 30, no. 29, pp. 5352–5363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Att, N. Hori, F. Iwasa, M. Yamada, T. Ueno, and T. Ogawa, “The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys,” Biomaterials, vol. 30, no. 26, pp. 4268–4276, 2009. View at Publisher · View at Google Scholar · View at Scopus