Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 409123, 6 pages
http://dx.doi.org/10.1155/2012/409123
Research Article

Zigzag and Helical AlN Layer Prepared by Glancing Angle Deposition and Its Application as a Buffer Layer in a GaN-Based Light-Emitting Diode

1Department of Electro-Optical Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao E. Road, Taipei 106, Taiwan
2Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, 79 W. Yingze Street, Shanxi, Taiyuan, China

Received 30 May 2012; Accepted 5 September 2012

Academic Editor: Jinquan Wei

Copyright © 2012 Lung-Chien Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Nakamura, “GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics, vol. 30, pp. L1705–L1707, 1991. View at Publisher · View at Google Scholar
  2. R. Datta, M. J. Kappers, M. E. Vickers, J. S. Barnard, and C. J. Humphreys, “Growth and characterisation of GaN with reduced dislocation density,” Superlattices and Microstructures, vol. 36, no. 4–6, pp. 393–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Tadatomo, H. Okagawa, Y. Ohuchi et al., “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Japanese Journal of Applied Physics, vol. 40, no. 6, pp. L583–L585, 2001. View at Google Scholar · View at Scopus
  4. L. C. Chen, J. B. Huang, P. J. Cheng, and L. S. Hong, “InGaN blue light-emitting diodes with ZnO nucleation layers prepared by the sol-gel method,” Semiconductor Science and Technology, vol. 22, no. 10, pp. 1178–1182, 2007. View at Publisher · View at Google Scholar
  5. K. Bao, X. N. Kang, B. Zhang et al., “Improvement of light extraction from GaN-based thin-film light-emitting diodes by patterning undoped GaN using modified laser lift-off,” Applied Physics Letters, vol. 92, no. 14, Article ID 141104, 3 pages, 2008. View at Google Scholar
  6. W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, K. S. Wen, and R. H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates,” Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 714–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. S. Wuu, W. K. Wang, W. C. Shih et al., “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photonics Technology Letters, vol. 17, no. 2, pp. 288–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. X. L. Fang, Y. Q. Wang, H. Meidia, and S. Mahajan, “Reduction of threading dislocations in GaN layers using in situ deposited silicon nitride masks on AlN and GaN nucleation layers,” Applied Physics Letters, vol. 84, no. 4, p. 484, 2004. View at Publisher · View at Google Scholar
  9. T. Wernicke, U. Zeimer, M. Herms, M. Weyers, M. Kneissl, and G. Irmer, “Microstructure of α-plane (2110) GaN ELOG stripe patterns with different in-plane orientation,” Journal of Materials Science: Materials in Electronics, vol. 19, pp. S46–S50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Beaumont, P. Gibart, M. Vaille, S. Haffouz, G. Nataf, and A. Bouillé, “Lateral overgrowth of GaN on patterned GaN/sapphire substrate via selective metal organic vapour phase epitaxy: a route to produce self supported GaN substrates,” Journal of Crystal Growth, vol. 189-190, pp. 97–102, 1998. View at Google Scholar · View at Scopus
  11. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, vol. 48, no. 5, p. 353, 1986. View at Publisher · View at Google Scholar
  12. J. C. Zhang, D. G. Zhao, J. F. Wang et al., “The influence of AlN buffer layer thickness on the properties of GaN epilayer,” Journal of Crystal Growth, vol. 268, no. 1-2, pp. 24–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. C. Chen, C. K. Wang, J. B. Huang, and L. S. Hong, “A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode,” Nanotechnology, vol. 20, no. 8, Article ID 085303, 2009. View at Publisher · View at Google Scholar
  14. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” Journal of Vacuum Science & Technology A, vol. 25, no. 5, pp. 1317–1335, 2007. View at Publisher · View at Google Scholar
  15. J. G. Van Dijken, M. D. Fleischauer, and M. J. Brett, “Controlled nanostructuring of CuPc thin films via glancing angle deposition for idealized organic photovoltaic architectures,” Journal of Materials Chemistry, vol. 21, no. 4, pp. 1013–1019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Xie, B. M. Henry, K. R. Kirov et al., “Study of the effect of changing the microstructure of titania layers on composite solar cell performance,” Thin Solid Films, vol. 511-512, pp. 523–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Brett, M. W. Seto, J. C. Sit, K. D. Harris, D. Vick, and K. Robbie, “Glancing angle deposition: recent research results,” in Engineered Nanostructural Films and Materials, vol. 3790 of Proceedings of SPIE, pp. 114–118, July 1999. View at Scopus
  18. Y. J. Park, K. M. A. Sobahan, and C. K. Hwangbo, “Optical and structural properties of a circular polarization handedness inverter prepared by using glancing angle deposition,” Journal of the Korean Physical Society, vol. 55, no. 3, pp. 1263–1266, 2009. View at Google Scholar · View at Scopus
  19. M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Optics Express, vol. 18, no. 12, pp. 13220–13226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3: Eu thin films,” Journal of Vacuum Science and Technology A, vol. 23, no. 4, pp. 856–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Advanced Functional Materials, vol. 18, no. 20, pp. 3111–3118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bonakdarpour, M. D. Fleischauer, M. J. Brett, and J. R. Dahn, “Columnar support structures for oxygen reduction electrocatalysts prepared by glancing angle deposition,” Applied Catalysis A, vol. 349, no. 1-2, pp. 110–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. J. Khudhayer, N. N. Kariuki, X. Wang, D. J. Myers, A. U. Shaikh, and T. Karabacak, “Oxygen reduction reaction electrocatalytic activity of glancing angle deposited platinum nanorod arrays,” Journal of The Electrochemical Society, vol. 158, no. 8, pp. B1029–B1041, 2011. View at Publisher · View at Google Scholar
  24. L. C. Chen, C. H. Tien, W. C. Liao, and Y. M. Luo, “Oblique-angle sputtered AlN nanocolumnar layer as a buffer layer in GaN-based LED,” Journal of Luminescence, vol. 131, no. 6, pp. 1234–1238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films, vol. 226, no. 2, pp. 196–201, 1993. View at Google Scholar · View at Scopus
  26. L. C. Chen, C. C. Chen, Y. T. Sung, and Y. Y. Hsu, “Oblique-angle sputtering effects on characteristics of nanocolumnar structure anisotropic indium tin oxide films,” Journal of the Electrochemical Society, vol. 156, no. 6, pp. H471–H474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Morkoç, Nitride Semiconductors and Devices, Springer, Berlin, Germany, 1999.