Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 415370, 5 pages
Research Article

Enhancement of Electron Transfer Efficiency in Solar Cells Based on PbS QD/N719 Dye Cosensitizers

Beijing Key Laboratory for Sensor, Ministry-of-Education Key Laboratory for Modern Measurement and Control Technology and School of Applied Sciences, Beijing Information Science and Technology University, Jianxiangqiao Campus, Beijing 100101, China

Received 20 June 2012; Accepted 26 June 2012

Academic Editor: Jiaguo Yu

Copyright © 2012 Yanyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cosensitized solar cells (CSSCs) have recently become an active subject in the field of sensitized solar cells (SSCs) due to their increasing electronic utilization. However, because of the dye molecules, layer must be single, dye-SSCs cannot be co-sensitized with two different dyes to form two different molecules layer. But it is possible to be cosensitized with quantum dots (QDs) and dyes. Here we designed novel photoanode architecture, namely, PbS QDs and N719 dyes are used as co-sensitizers of the TiO2 mesoporous film. The experimental result shows that PbS QDs/N719 dyes co-sensitized structure can make PbS QDs and N719 dyes mutual improvement. Taking the advantage of PbS not only achieved higher transfer efficiency of photo-excited electron, but also achieved obviously wider range and higher intensity of absorption. The PbS QDs which have been deposited on the TiO2 film was coated by N719 dyes, which can effectively prevent PbS QDs from corroding by I / I 3 electrolyte and light. As we expected, the solar energy-conversion efficiency which is showed by CSSCs fabricated following these photoanodes is relatively higher than the PbS QDs or N719 dyes, single-sensitized solar cells under the illumination of one sun.