Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 435873, 17 pages
http://dx.doi.org/10.1155/2012/435873
Review Article

A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications

School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China

Received 21 April 2011; Accepted 11 July 2011

Academic Editor: Li-Hong Liu

Copyright © 2012 Wei Yu and Huaqing Xie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 512–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Özerinç, S. Kakaç, and A. G. YazIcIoğlu, “Enhanced thermal conductivity of nanofluids: a state-of-the-art review,” Microfluidics and Nanofluidics, vol. 8, no. 2, pp. 145–170, 2010. View at Publisher · View at Google Scholar
  3. X. Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar
  4. X. Q. Wang and A. S. Mujumdar, “A review on nanofluids—part I: theoretical and numerical investigations,” Brazilian Journal of Chemical Engineering, vol. 25, no. 4, pp. 613–630, 2008. View at Google Scholar · View at Scopus
  5. Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technology, vol. 196, no. 2, pp. 89–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 3187–3196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Lo, T. T. Tsung, and L. C. Chen, “Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Crystal Growth, vol. 277, no. 1–4, pp. 636–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Lo, T. T. Tsung, L. C. Chen, C. H. Su, and H. M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS),” Journal of Nanoparticle Research, vol. 7, no. 2-3, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. T. Zhu, Y. S. Lin, and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science, vol. 277, no. 1, pp. 100–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Bönnemann, S. S. Botha, B. Bladergroen, and V. M. Linkov, “Monodisperse copper- and silver-nanocolloids suitable for heat-conductive fluids,” Applied Organometallic Chemistry, vol. 19, no. 6, pp. 768–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Singh and V. S. Raykar, “Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties,” Colloid and Polymer Science, vol. 286, no. 14-15, pp. 1667–1673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kumar, H. Joshi, R. Pasricha, A. B. Mandale, and M. Sastry, “Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules,” Journal of Colloid and Interface Science, vol. 264, no. 2, pp. 396–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Yu, H. Xie, X. Wang, and X. Wang, “Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide,” Nanoscale Research Letters, vol. 6, p. 47, 2011. View at Google Scholar
  15. H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, “Novel synthesis and thermal conductivity of CuO nanofluid,” Journal of Physical Chemistry C, vol. 111, no. 4, pp. 1646–1650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Chen and X. Wang, “Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature,” Materials Letters, vol. 62, no. 15, pp. 2215–2218, 2008. View at Publisher · View at Google Scholar
  17. X. Feng, H. Ma, S. Huang et al., “Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports,” Journal of Physical Chemistry B, vol. 110, no. 25, pp. 12311–12317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Yu, H. Xie, L. Chen, and Y. Li, “Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method,” Colloids and Surfaces A, vol. 355, no. 1–3, pp. 109–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Wang and J. Fan, “Nanofluids research: key issues,” Nanoscale Research Letters, vol. 5, no. 8, pp. 1241–1252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Wei and L. Wang, “Synthesis and thermal conductivity of microfluidic copper nanofluids,” Particuology, vol. 8, no. 3, pp. 262–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Li, D. Zhu, and X. Wang, “Evaluation on dispersion behavior of the aqueous copper nano-suspensions,” Journal of Colloid and Interface Science, vol. 310, no. 2, pp. 456–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, and Y. Yin, “Preparation and thermal conductivity of suspensions of graphite nanoparticles,” Carbon, vol. 45, no. 1, pp. 226–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Li and R. B. Kaner, “Processable stabilizer-free polyaniline nanofiber aqueous colloids,” Chemical Communications, vol. 14, no. 26, pp. 3286–3288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H. J. Kim, I. C. Bang, and J. Onoe, “Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids,” Optics and Lasers in Engineering, vol. 47, no. 5, pp. 532–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. X. J. Wang, X. Li, and S. Yang, “Influence of pH and SDBS on the stability and thermal conductivity of nanofluids,” Energy and Fuels, vol. 23, no. 5, pp. 2684–2689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids,” Current Applied Physics, vol. 9, no. 1, pp. 131–139, 2009. View at Publisher · View at Google Scholar
  27. L. Chen and H. Xie, “Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant,” Thermochimica Acta, vol. 506, no. 1-2, pp. 62–66, 2010. View at Publisher · View at Google Scholar
  28. J. Huang, X. Wang, Q. Long, X. Wen, Y. Zhou, and L. Li, “Influence of pH on the stability characteristics of nanofluids,” in Proceedings of the Symposium on Photonics and Optoelectronics (SOPO '09), 2009. View at Publisher · View at Google Scholar
  29. M. Farahmandjou, S. A. Sebt, S. S. Parhizgar, P. Aberomand, and M. Akhavan, “Stability investigation of colloidal FePt nanoparticle systems by spectrophotometer analysis,” Chinese Physics Letters, vol. 26, no. 2, Article ID 027501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Hwang, J. K. Lee, C. H. Lee et al., “Stability and thermal conductivity characteristics of nanofluids,” Thermochimica Acta, vol. 455, no. 1-2, pp. 70–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Chen, H. Xie, Y. Li, and W. Yu, “Nanofluids containing carbon nanotubes treated by mechanochemical reaction,” Thermochimica Acta, vol. 477, no. 1-2, pp. 21–24, 2008. View at Publisher · View at Google Scholar
  32. X. Yang and Z. H. Liu, “A kind of nanofluid consisting of surface-functionalized nanoparticles,” Nanoscale Research Letters, vol. 5, no. 8, pp. 1324–1328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Chen and H. Xie, “Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction,” Thermochimica Acta, vol. 497, no. 1-2, pp. 67–71, 2010. View at Publisher · View at Google Scholar
  34. K. A. Wepasnick, B. A. Smith, J. L. Bitter, and D. H. Fairbrother, “Chemical and structural characterization of carbon nanotube surfaces,” Analytical and Bioanalytical Chemistry, vol. 396, no. 3, pp. 1003–1014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Yu, Y. J. Kim, and H. Ma, “Nanofluids with plasma treated diamond nanoparticles,” Applied Physics Letters, vol. 92, no. 10, Article ID 103111, 2008. View at Publisher · View at Google Scholar
  36. I. M. Joni, A. Purwanto, F. Iskandar, and K. Okuyama, “Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process,” Industrial and Engineering Chemistry Research, vol. 48, no. 15, pp. 6916–6922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Tang, G. Cheng, X. Ma, X. Pang, and Q. Zhao, “Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system,” Applied Surface Science, vol. 252, no. 14, pp. 5227–5232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Missana and A. Adell, “On the applicability of DLVO theory to the prediction of clay colloids stability,” Journal of Colloid and Interface Science, vol. 230, no. 1, pp. 150–156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Popa, G. Gillies, G. Papastavrou, and M. Borkovec, “Attractive and repulsive electrostatic forces between positively charged latex particles in the presence of anionic linear polyelectrolytes,” Journal of Physical Chemistry B, vol. 114, no. 9, pp. 3170–3177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kamiya, Y. Fukuda, Y. Suzuki, M. Tsukada, T. Kakui, and M. Naito, “Effect of polymer dispersant structure on electrosteric interaction and dense alumina suspension behavior,” Journal of the American Ceramic Society, vol. 82, no. 12, pp. 3407–3412, 1999. View at Google Scholar · View at Scopus
  41. K. V. Wong and O. de Leon, “Applications of nanofluids: current and future,” Advances in Mechanical Engineering, vol. 2010, Article ID 519659, 11 pages, 2010. View at Publisher · View at Google Scholar
  42. G. Donzelli, R. Cerbino, and A. Vailati, “Bistable heat transfer in a nanofluid,” Physical Review Letters, vol. 102, no. 10, Article ID 104503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, and J. Santamaría, “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22–32, 2007. View at Publisher · View at Google Scholar
  44. W. Yu, D. M. France, D. Singh, E. V. Timofeeva, D. S. Smith, and J. L. Routbort, “Mechanisms and models of effective thermal conductivities of nanofluids,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 8, pp. 4824–4849, 2010. View at Publisher · View at Google Scholar
  45. K. Q. Ma and J. Liu, “Nano liquid-metal fluid as ultimate coolant,” Physics Letters Section A, vol. 361, no. 3, pp. 252–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Paul, M. Chopkar, I. Manna, and P. K. Das, “Techniques for measuring the thermal conductivity of nanofluids: a review,” Renewable and Sustainable Energy Reviews, vol. 14, p. 1913, 2010. View at Google Scholar
  47. H. Xie, W. Yu, and W. Chen, “MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles,” Journal of Experimental Nanoscience, vol. 5, no. 5, pp. 463–472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. P. Jang and S. U. S. Choi, “Cooling performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2457–2463, 2006. View at Publisher · View at Google Scholar
  49. C. T. Nguyen, G. Roy, N. Galanis, and S. Suiro, “Heat transfer enhancement by using Al2O3-water nanofluid in a liquid cooling system for microprocessors,” in Proceedings of the 4th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, pp. 103–108, Elounda, Greece, August 2006.
  50. H. Shokouhmand, M. Ghazvini, and J. Shabanian, “Performance analysis of using nanofluids in microchannel heat sink in different flow regimes and its simulation using artificial neural network,” in Proceedings of the World Congress on Engineering (WCE '08), vol. 3, London, UK, July 2008.
  51. C. Y. Tsaia, H. T. Chiena, P. P. Dingb, B. Chanc, T. Y. Luhd, and P. H. Chena, “Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance,” Materials Letters, vol. 58, p. 1461, 2004. View at Google Scholar
  52. Y. T. Chen, W. C. Wei, S. W. Kang, and C. S. Yu, “Effect of nanofluid on flat heat pipe thermal performance,” in Proceedings of the 24th IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM '08), March 2006.
  53. H. B. Ma, C. Wilson, B. Borgmeyer et al., “Effect of nanofluid on the heat transport capability in an oscillating heat pipe,” Applied Physics Letters, vol. 88, no. 14, Article ID 143116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. W. Kang, W. C. Wei, S. H. Tsai, and C. C. Huang, “Experimental investigation of nanofluids on sintered heat pipe thermal performance,” Applied Thermal Engineering, vol. 29, no. 5-6, pp. 973–979, 2009. View at Publisher · View at Google Scholar
  55. P. Naphon, P. Assadamongkol, and T. Borirak, “Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency,” International Communications in Heat and Mass Transfer, vol. 35, no. 10, pp. 1316–1319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Xie and L. Chen, “Adjustable thermal conductivity in carbon nanotube nanofluids,” Physics Letters Section A, vol. 373, no. 21, pp. 1861–1864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Xie, W. Yu, and Y. Li, “Thermal performance enhancement in nanofluids containing diamond nanoparticles,” Journal of Physics D, vol. 42, no. 9, Article ID 095413, 2009. View at Publisher · View at Google Scholar
  58. W. Yu, H. Xie, L. Chen, and Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid,” Thermochimica Acta, vol. 491, no. 1-2, pp. 92–96, 2009. View at Publisher · View at Google Scholar
  59. W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, “Review and assessment of nanofluid technology for transportation and other applications,” Tech. Rep. 78, ANL/ESD/07-9, Argonne National Laboratory, 2007. View at Google Scholar
  60. M. Kole and T. K. Dey, “Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant,” Journal of Physics D, vol. 43, no. 31, Article ID 315501, 2010. View at Publisher · View at Google Scholar
  61. S. C. Tzeng, C. W. Lin, and K. D. Huang, “Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles,” Acta Mechanica, vol. 179, no. 1-2, pp. 11–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Singh, J. Toutbort, G. Chen et al., “Heavy vehicle systems optimization merit review and peer evaluation,” Annual Report, Argonne National Laboratory, 2006. View at Google Scholar
  63. http://www.labnews.co.uk/feature_archive.php/5449/5/keeping-it-cool.
  64. J. Routbort et al., Argonne National Lab, Michellin North America, St. Gobain Corp., 2009, http://www1.eere.energy.gov/industry/nanomanufacturing/pdfs/nanofluids industrial cooling.pdf.
  65. http://96.30.12.13/execsumm/VU0319–Nanofluid%20for%20Cooling%20Enhancement%20of%20Electrical%20Power%20Equipment.pdf.
  66. I. C. Nelson, D. Banerjee, and R. Ponnappan, “Flow loop experiments using polyalphaolefin nanofluids,” Journal of Thermophysics and Heat Transfer, vol. 23, no. 4, pp. 752–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. D. P. Kulkarni, D. K. Das, and R. S. Vajjha, “Application of nanofluids in heating buildings and reducing pollution,” Applied Energy, vol. 86, no. 12, pp. 2566–2573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Boungiorno, L. W. Hu, S. J. Kim, R. Hannink, B. Truong, and E. Forrest, “Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features issues, and research gaps,” Nuclear Technology, vol. 162, no. 1, pp. 80–91, 2008. View at Google Scholar · View at Scopus
  69. S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Applied Physics Letters, vol. 83, no. 16, pp. 3374–3376, 2003. View at Publisher · View at Google Scholar
  70. P. Vassallo, R. Kumar, and S. D'Amico, “Pool boiling heat transfer experiments in silica-water nano-fluids,” International Journal of Heat and Mass Transfer, vol. 47, no. 2, pp. 407–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. J. K. Kim, J. Y. Jung, and Y. T. Kang, “The effect of nano-particles on the bubble absorption performance in a binary nanofluid,” International Journal of Refrigeration, vol. 29, no. 1, pp. 22–29, 2006. View at Publisher · View at Google Scholar
  72. J. K. Kim, J. Y. Jung, and Y. T. Kang, “Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids,” International Journal of Refrigeration, vol. 30, no. 1, pp. 50–57, 2007. View at Publisher · View at Google Scholar
  73. J. Kim, Y. T. Kang, and C. K. Choi, “Soret and Dufour effects on convective instabilities in binary nanofluids for absorption application,” International Journal of Refrigeration, vol. 30, no. 2, pp. 323–328, 2007. View at Publisher · View at Google Scholar
  74. X. Ma, F. Su, J. Chen, and Y. Zhang, “Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid,” Journal of Mechanical Science and Technology, vol. 21, p. 1813, 2007. View at Google Scholar
  75. X. Ma, F. Su, J. Chen, T. Bai, and Z. Han, “Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 657–660, 2009. View at Publisher · View at Google Scholar
  76. S. Komati and A. K. Suresh, “CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 8, pp. 1094–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Yang, K. Du, B. Cheng, and Y. Jiang, “The influence of Al2O3 nanofluid on the falling film absorption with ammonia-water,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '10), 2010. View at Publisher · View at Google Scholar
  78. M. F. Demirbas, “Thermal energy storage and phase change materials: an overview,” Energy Sources Part B, vol. 1, no. 1, pp. 85–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Wu, D. Zhu, X. Zhang, and J. Huang, “Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM),” Energy and Fuels, vol. 24, no. 3, pp. 1894–1898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. D. Liu, Y. G. Zhou, M. W. Tong, and X. S. Zhou, “Experimental study of thermal conductivity and phase change performance of nanofluids PCMs,” Microfluidics and Nanofluidics, vol. 7, no. 4, pp. 579–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” Journal of Renewable and Sustainable Energy, vol. 2, no. 3, Article ID 033102, 13 pages, 2010. View at Publisher · View at Google Scholar
  82. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature Nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, pp. 0410041–0410047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environmental Science and Technology, vol. 43, no. 15, pp. 6082–6087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Sani, S. Barison, C. Pagura et al., “Carbon nanohorns-based nanofluids as direct sunlight absorbers,” Optics Express, vol. 18, p. 4613, 2010. View at Google Scholar
  85. J. Zhou, Z. Wu, Z. Zhang, W. Liu, and Q. Xue, “Tribological behavior and lubricating mechanism of Cu nanoparticles in oil,” Tribology Letters, vol. 8, no. 4, pp. 213–218, 2000. View at Google Scholar
  86. B. Shen, A. J. Shih, and S. C. Tung, “Application of nanofluids in minimum quantity lubrication grinding,” Tribology Transactions, vol. 51, no. 6, pp. 730–737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. H. L. Yu, Y. Xu, P. J. Shi, B. S. Xu, X. L. Wang, and Q. Liu, “Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 3, pp. 636–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. B. Yu, Z. Liu, F. Zhou, W. Liu, and Y. Liang, “A novel lubricant additive based on carbon nanotubes for ionic liquids,” Materials Letters, vol. 62, no. 17-18, pp. 2967–2969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Wang, X. Wang, W. Lou, and J. Hao, “Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 114, no. 19, pp. 8749–8754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. L. J. Wang, C. W. Guo, and R. Yamane, “Experimental research on tribological properties of Mn0.78 Zn0.22 FE2O4 magnetic fluids,” Journal of Tribology, vol. 130, no. 3, Article ID 031801, 2008. View at Publisher · View at Google Scholar
  91. S. Chen and D. H. Mao, “Study on dispersion stability and self-repair principle of ultrafine-tungsten disulfide particulates,” Advanced Tribology, vol. 995, 2010. View at Google Scholar
  92. D. X. Peng, C. H. Chen, Y. Kang, Y. P. Chang, and S. Y. Chang, “Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant,” Industrial Lubrication and Tribology, vol. 62, no. 2, pp. 111–120, 2010. View at Publisher · View at Google Scholar
  93. L. Vékás, D. Bica, and M. V. Avdeev, “Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications,” China Particuology, vol. 5, no. 1-2, pp. 43–49, 2007. View at Publisher · View at Google Scholar
  94. R. E. Rosensweig, “Magnetic fluids,” Annual Review of Fluid Mechanics, vol. 19, pp. 437–463, 1987. View at Google Scholar · View at Scopus
  95. Y. S. Kim, K. Nakatsuka, T. Fujita, and T. Atarashi, “Application of hydrophilic magnetic fluid to oil seal,” Journal of Magnetism and Magnetic Materials, vol. 201, no. 1–3, pp. 361–363, 1999. View at Google Scholar · View at Scopus
  96. Y. Mitamura, S. Arioka, D. Sakota, K. Sekine, and M. Azegami, “Application of a magnetic fluid seal to rotary blood pumps,” Journal of Physics Condensed Matter, vol. 20, no. 20, Article ID 204145, 2008. View at Publisher · View at Google Scholar
  97. Y. S. Kim and Y. H. Kim, “Application of ferro-cobalt magnetic fluid for oil sealing,” Journal of Magnetism and Magnetic Materials, vol. 267, no. 1, pp. 105–110, 2003. View at Publisher · View at Google Scholar
  98. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, “Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids),” Journal of Nanoparticle Research, vol. 9, no. 3, pp. 479–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Jalal, E. K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, and P. Nancarrow, “ZnO nanofluids: green synthesis, characterization, and antibacterial activity,” Materials Chemistry and Physics, vol. 121, no. 1-2, pp. 198–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, “Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,” FEMS Microbiology Letters, vol. 279, no. 1, pp. 71–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin, “Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7,” Journal of Applied Microbiology, vol. 107, no. 4, pp. 1193–1201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. O. Mahapatra, M. Bhagat, C. Gopalakrishnan, and K. D. Arunachalam, “Ultrafine dispersed CuO nanoparticles and their antibacterial activity,” Journal of Experimental Nanoscience, vol. 3, no. 3, pp. 185–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Gajjar, B. Pettee, D. W. Britt, W. Huang, W. P. Johnson, and A. J. Anderson, “Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440,” Journal of Biological Engineering, vol. 3, p. 9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. H. J. Lee, S. Y. Yeo, and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics,” Polymer Journal, vol. 8, p. 2199, 2003. View at Google Scholar
  105. A. Panáček, L. Kvítek, R. Prucek et al., “Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, 2006. View at Publisher · View at Google Scholar
  106. L. Brunet, D. Y. Lyon, E. M. Hotze, P. J. J. Alvarez, and M. R. Wiesner, “Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles,” Environmental Science and Technology, vol. 43, no. 12, pp. 4355–4360, 2009. View at Publisher · View at Google Scholar
  107. D. Y. Lyon and P. J. J. Alvarez, “Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation,” Environmental Science and Technology, vol. 42, no. 21, pp. 8127–8132, 2008. View at Publisher · View at Google Scholar
  108. A. Vonarbourg, C. Passirani, P. Saulnier, and J. P. Benoit, “Parameters influencing the stealthiness of colloidal drug delivery systems,” Biomaterials, vol. 27, no. 24, pp. 4356–4373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Singh and J. W. Lillard, “Nanoparticle-based targeted drug delivery,” Experimental and Molecular Pathology, vol. 86, no. 3, pp. 215–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 17, p. 1307, 2008. View at Google Scholar
  111. M. Nakano, H. Matsuura, D. Ju et al., “Drug delivery system using nano-magnetic fluid,” in Proceedings of the 3rd International Conference on Innovative Computing, Information and Control (ICICIC '08), Dalian, China, June 2008.
  112. A. Bianco, K. Kostarelos, and M. Prato, “Applications of carbon nanotubes in drug delivery,” Current Opinion in Chemical Biology, vol. 9, no. 6, pp. 674–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Tripisciano, K. Kraemer, A. Taylor, and E. Borowiak-Palen, “Single-wall carbon nanotubes based anticancer drug delivery system,” Chemical Physics Letters, vol. 478, no. 4–6, pp. 200–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Pastorin, W. Wu, S. Wieckowski et al., “Double functionalisation of carbon nanotubes for multimodal drug delivery,” Chemical Communications, no. 11, pp. 1182–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS nano, vol. 1, no. 1, pp. 50–56, 2007. View at Publisher · View at Google Scholar
  116. X. Sun, Z. Liu, J. T. Robinson et al., “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Research, vol. 1, p. 203, 2008. View at Google Scholar
  117. L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small, vol. 6, no. 4, pp. 537–544, 2010. View at Publisher · View at Google Scholar
  118. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” Journal of the American Chemical Society, vol. 130, no. 33, pp. 10876–10877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, and Y. Chen, “Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers,” Journal of Materials Chemistry, vol. 19, no. 18, pp. 2710–2714, 2009. View at Publisher · View at Google Scholar
  120. X. Fan, H. Chen, Y. Ding, P. K. Plucinski, and A. A. Lapkin, “Potential of 'nanofluids' to further intensify microreactors,” Green Chemistry, vol. 10, no. 6, pp. 670–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. M. J. Kao, C. H. Lo, T. T. Tsung, Y. Y. Wu, C. S. Jwo, and H. M. Lin, “Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system,” Journal of Alloys and Compounds, vol. 434-435, pp. 672–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. M. J. Kao, H. Chang, Y. Y. Wu, T. T. Tsung, and H. M. Lin, “Producing Aluminum-oxide brake nanofluids derived using plasma charging system,” Journal of the Chinese Society of Mechanical Engineers, vol. 28, p. 123, 2007. View at Google Scholar
  123. T. Sharma, A. L. M. Reddy, T. S. Chandra, and S. Ramaprabhu, “Development of carbon nanotubes and nanofluids based microbial fuel cell,” International Journal of Hydrogen Energy, vol. 33, no. 22, pp. 6749–6754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Philip, T. Jaykumar, P. Kalyanasundaram, and B. Raj, “A tunable optical filter,” Measurement Science and Technology, vol. 14, no. 8, pp. 1289–1294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Mishra, P. Tripathy, S. Ram, and H. J. Fecht, “Optical properties in nanofluids of gold nanoparticles in poly(vinylpyrrolidone),” Journal of Nanoscience and Nanotechnology, vol. 9, no. 7, pp. 4342–4347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. W. Yu, H. Xie, and D. Bao, “Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets,” Nanotechnology, vol. 21, no. 5, Article ID 055705, 2010. View at Publisher · View at Google Scholar
  127. W. Yu, H. Xie, and W. Chen, “Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets,” Journal of Applied Physics, vol. 107, no. 9, Article ID 094317, 2010. View at Publisher · View at Google Scholar
  128. Z. H. Han, F. Y. Cao, and B. Yang, “Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids,” Applied Physics Letters, vol. 92, no. 24, Article ID 243104, 2008. View at Publisher · View at Google Scholar