Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 512409, 6 pages
http://dx.doi.org/10.1155/2012/512409
Research Article

Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA

Received 5 June 2012; Accepted 4 September 2012

Academic Editor: Gaurav Mago

Copyright © 2012 A. Hemati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Agarwal, S. Shrestha, P. Ghane, and K. Varahramyan, “Layer-by-Layer nanoassembly of CIS nanoparticles,” in Proceedings of the ASME International Manufacturing Science and Engineering Conference, vol. 2, pp. 415–418, Erie, Pa, USA, 2010. View at Scopus
  2. F. N. Crespilho, V. Zucolotto, O. N. Oliveria Jr., and F. C. Nart, “Electrochemistry of layer-by-layer films: a review,” International Journal of Electrochemical Science, vol. 1, pp. 194–214, 2006. View at Google Scholar
  3. I. Repins, M. A. Contreras, B. Egaas et al., “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 235–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, and R. Kniese, “Highly efficient CIS solar cells and modules made by the co-evaporation process,” Thin Solid Films, vol. 517, no. 7, pp. 2111–2114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. K. Kapur, A. Bansal, P. Le, and O. I. Asensio, “Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks,” Thin Solid Films, vol. 431-432, pp. 53–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Bensebaa, C. Durand, A. Aouadou et al., “A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1897–1903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, “Thin film Cu(In,Ga)Se2 solar cells processed from solution pastes with polymethyl methacrylate binder,” Thin Solid Films, vol. 519, no. 21, pp. 7259–7263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Varahramyan and Y. Lvov, “Nanomanufacturing by layer-by-layer assembly—from nanoscale coating to device applications,” Journal of Nanoengineering and Nanosystems, vol. 220, no. 1, pp. 29–37, 2006. View at Publisher · View at Google Scholar
  9. M. G. Panthani, V. Akhavan, B. Goodfellow et al., “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” Journal of the American Chemical Society, vol. 130, no. 49, pp. 16770–16777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. de Kergommeaux, A. Fiore, N. Bruyant et al., “Synthesis of colloidal CuInSe2 nanocrystals films for photovoltaic applications,” Solar Energy Materials and Solar Cells, vol. 95, supplement 1, pp. S39–S43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Optics Express, vol. 18, no. S3, pp. A411–A420, 2010. View at Google Scholar · View at Scopus
  12. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, “Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption,” Journal of the American Chemical Society, vol. 117, no. 22, pp. 6117–6123, 1995. View at Google Scholar · View at Scopus