Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 512579, 6 pages
http://dx.doi.org/10.1155/2012/512579
Research Article

Photogenerating Silver Nanoparticles and Polymer Nanocomposites by Direct Activation in the Near Infrared

1Institut de Science des Matériaux de Mulhouse, CNRS LRC 7228, 15 rue Jean Starcky, 68057 Mulhouse, France
2Laboratoire Réactions et Génie des Procédés, CNRS UPR 3349, Nancy-University, 1 rue Grandville, 54001 Nancy, France
3Department of Photochemistry, CNRS FRE 3252, Haute Alsace University, 3 rue A. Werner, 68100 Mulhouse, France

Received 8 August 2011; Accepted 6 September 2011

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Lavinia Balan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sakamoto, M. Fujistuka, and T. Majima, “Light as a construction tool of metal nanoparticles: synthesis and mechanism,” Journal of Photochemistry and Photobiology C, vol. 10, no. 1, pp. 33–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. G. Freeman, K. C. Grabar, K. J. Allison et al., “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science, vol. 267, no. 5204, pp. 1629–1632, 1995. View at Google Scholar · View at Scopus
  3. W. P. McConnell, J. P. Novak, L. C. Brousseau, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim, “Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays,” Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8925–8930, 2000. View at Google Scholar · View at Scopus
  4. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, vol. 409, no. 6816, pp. 66–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science, vol. 287, no. 5457, pp. 1471–1473, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” Journal of Physical Chemistry B, vol. 103, no. 1, pp. 77–82, 1999. View at Google Scholar · View at Scopus
  7. Y. Dirix, C. Bastiaansen, W. Cased, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters,” Advanced Materials, vol. 11, no. 3, pp. 223–227, 1999. View at Google Scholar · View at Scopus
  8. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Optics Letters, vol. 25, no. 8, pp. 563–565, 2000. View at Google Scholar · View at Scopus
  9. J. Ouyang, C. W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells,” Applied Physics Letters, vol. 86, no. 12, Article ID 123507, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Letters, vol. 7, no. 3, pp. 729–732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. A. Boyd, L. Greengard, M. Brongersma, M. Y. Ei-Naggar, and D. G. Goodwin, “Plasmon-assisted chemical vapor deposition,” Nano Letters, vol. 6, no. 11, pp. 2592–2597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Sambhy, M. M. MacBride, B. R. Peterson, and A. Sen, “Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials,” Journal of the American Chemical Society, vol. 128, no. 30, pp. 9798–9808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. C. Anyaogu, A. V. Fedorov, and D. C. Neckers, “Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles,” Langmuir, vol. 24, no. 8, pp. 4340–4346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Balan and D. Burget, “Synthesis of metal/polymer nanocomposite by UV-radiation curing,” European Polymer Journal, vol. 42, no. 12, pp. 3180–3189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Progress in Organic Coatings, vol. 62, no. 3, pp. 351–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. T. Selvan, J. P. Spatz, H. A. Klok, and M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Advanced Materials, vol. 10, no. 2, pp. 132–134, 1998. View at Google Scholar · View at Scopus
  17. M. K. Corbierre, N. S. Cameron, M. Sutton et al., “Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices [13],” Journal of the American Chemical Society, vol. 123, no. 42, pp. 10411–10412, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. K. Sudeep and P. V. Kamat, “Photosensitized growth of silver nanoparticles under visible light irradiation: a mechanistic investigation,” Chemistry of Materials, vol. 17, no. 22, pp. 5404–5410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yagci, M. Sangermano, and G. Rizza, “In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes,” Chemical Communications, no. 24, pp. 2771–2773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Balan, M. Jin, J. P. Malval, H. Chaumeil, A. Defoin, and L. Vidal, “Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye,” Macromolecules, vol. 41, no. 23, pp. 9359–9365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Balan, C. Turck, O. Soppera, L. Vidal, and D. J. Lougnot, “Holographic recording with polymer nanocomposites containing silver nanoparticles photogenerated in situ by the interference pattern,” Chemistry of Materials, vol. 21, no. 24, pp. 5711–5718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Balan, J. P. Malval, R. Schneider, D. Le Nouen, and D. J. Lougnot, “In-situ fabrication of polyacrylate-silver nanocomposite through photoinduced tandem reactions involving eosin dye,” Polymer, vol. 51, no. 6, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Noiret, C. Meyer, and D. J. Lougnot, “Photopolymers for holographic recording. V. Self-processing systems with near infrared sensitivity,” Pure and Applied Optics, vol. 3, no. 1, pp. 55–71, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Bányász, D. J. Lougnot, and C. Turck, “Holography and holographic interferometry with a near IR sensitive photopolymer system,” Journal de Physique III, vol. 7, no. 1, pp. 211–222, 1997. View at Google Scholar · View at Scopus
  25. T. Urano, H. Nagasaka, M. Shimizu, and T. Yamaoka, “Photopolymerization system thermally accelerated by a laser diode,” Journal of Imaging Science and Technology, vol. 41, no. 4, pp. 407–412, 1997. View at Google Scholar · View at Scopus
  26. A. Espanet, C. Ecoffet, and D. J. Lougnot, “PEW: photopolymerization by evanescent waves. II. Revealing dramatic inhibiting effects of oxygen at submicrometer scale,” Journal of Polymer Science Part A, vol. 37, no. 13, pp. 2075–2085, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Lougnot, S. Lepaja, J. P. Fouassier, and J. Faure, “Etude physicochimique d'une série de cyanines. Partie V: le mécanisme de photodégradation,” Journal de Chimie Physique et de Physicochimie Biologique, vol. 79, no. 9, p. 618, 1982. View at Google Scholar
  28. S. Lepaja, H. Strub, and D. J. Lougnot, “Photophysical study of a series of cyanines. Part III: The direct photooxidation reaction,” Zeitschrift für Naturforschung A, vol. 38a, no. 1, pp. 56–60, 1983. View at Google Scholar
  29. P. Czerney, G. Graneß, E. Birckner, F. Vollmer, and W. Rettig, “Molecular engineering of cyanine-type fluorescent and laser dyes,” Journal of Photochemistry and Photobiology A, vol. 89, no. 1, pp. 31–36, 1995. View at Google Scholar
  30. J. P. Fouassier, D. J. Lougnot, and J. Faure, “Photoisomerization processes in the IR-140 laser dye,” Optics Communications, vol. 23, no. 3, pp. 393–397, 1977. View at Google Scholar · View at Scopus
  31. C. Carré, C. Reichardt, and D. J. Lougnot, “Etude physicochimique d'une série de cyanines: Partie VII: Rendement en état triplet et photosensibilisation de l'oxygène singulet,” Journal de Chimie Physique et de Physicochimie Biologique, vol. 84, no. 4, pp. 577–585, 1984. View at Google Scholar
  32. K. Jia, Y. Wan, A. Xia, S. Li, F. Gong, and G. Yang, “Characterization of photoinduced isomerization and intersystem crossing of the cyanine dye Cy3,” Journal of Physical Chemistry A, vol. 111, no. 9, pp. 1593–1597, 2007. View at Publisher · View at Google Scholar · View at Scopus