Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 564121, 12 pages
http://dx.doi.org/10.1155/2012/564121
Review Article

Human Biomonitoring of Engineered Nanoparticles: An Appraisal of Critical Issues and Potential Biomarkers

Laboratory of Industrial Toxicology, University of Parma Medical School, Via A. Gramsci 14, 43100 Parma, Italy

Received 5 January 2012; Revised 26 April 2012; Accepted 26 April 2012

Academic Editor: Ivo Iavicoli

Copyright © 2012 Enrico Bergamaschi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Zielhuis and T. P. Henderson, “Definitions of monitoring activities and their relevance for the practice of occupational health,” International Archives of Occupational and Environmental Health, vol. 57, no. 4, pp. 249–257, 1986. View at Google Scholar · View at Scopus
  2. P. A. Schulte and J. E. Hauser, “The use of biomarkers in occupational health research, practice, and policy,” Toxicology Letters. In press. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Manno, C. Viau, J. Cocker et al., “Biomonitoring for occupational health risk assessment (BOHRA),” Toxicology Letters, vol. 192, no. 1, pp. 3–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. Lauwerys and P. Hoet, Industrial Chemical Exposure. Guidelines for Biological Monitoring, vol. 1, Lewis Publishers, Boca Raton, Fla, USA, 2nd edition, 1993.
  5. NRC, “National Research Council, Biological markers in environmental health research,” Environmental Health Perspective, vol. 74, pp. 3–9, 1987. View at Google Scholar
  6. R. Smolders, A. Bartonova, P. J. Boogaard et al., “The use of biomarkers for risk assessment: reporting from the INTARESE/ENVIRISK Workshop in Prague,” International Journal of Hygiene and Environmental Health, vol. 213, no. 5, pp. 395–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Riviere and C. L. Tran, “Pharmacokinetics of nanomaterials,” in Nanotoxicology: Characterization, Dosing and Health Effects, pp. 127–140, Informa Healthcare, New York, NY, USA, 2007. View at Google Scholar
  8. M. Geiser and W. G. Kreyling, “Deposition and biokinetics of inhaled nanoparticles,” Particle and Fibre Toxicology, vol. 7, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. T. Holgate, “Exposure, uptake, distribution and toxicity of nanomaterials in humans,” Journal of Biomedical Nanotechnology, vol. 6, no. 1, pp. 1–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, and K. A. Dawson, “Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14265–14270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Lundqvist, J. Stigler, T. Cedervall et al., “The evolution of the protein corona around nanoparticles: a test study,” ACS Nano, vol. 5, no. 9, pp. 7503–7509, 2011. View at Google Scholar
  12. D. M. Brown, C. Dickson, P. Duncan, F. Al-Attili, and V. Stone, “Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality,” Nanotechnology, vol. 21, no. 21, Article ID 215104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Colognato, A. Bonelli, J. Ponti et al., “Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro,” Mutagenesis, vol. 23, no. 5, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Pettibone, A. Adamcakova-Dodd, P. S. Thorne, P. T. O'Shaughnessy, J. A. Weydert, and V. H. Grassian, “Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles,” Nanotoxicology, vol. 2, no. 4, pp. 189–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, “A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity,” Critical Reviews in Toxicology, vol. 40, no. 4, pp. 328–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Borm, F. C. Klaessig, T. D. Landry et al., “Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles,” Toxicological Sciences, vol. 90, no. 1, pp. 23–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Iavicoli, E. J. Calabrese, and M. A. Nascarella, “Exposure to nanoparticles and hormesis,” Dose-Response, vol. 8, no. 4, pp. 501–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Aschberger, H. J. Johnston, V. Stone et al., “Review of carbon nanotubes toxicity and exposure-appraisal of human health risk assessment based on open literature,” Critical Reviews in Toxicology, vol. 40, no. 9, pp. 759–790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Wittmaack, “In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?” Environmental Health Perspectives, vol. 115, no. 2, pp. 187–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Kuempel, C. Tran, V. Castranova, and A. Bailer, “Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans,” Inhalation Toxicology, vol. 18, no. 10, pp. 717–724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Schmid, W. Möller, M. Semmler-Behnke et al., “Dosimetry and toxicology of inhaled ultrafine particles,” Biomarkers, vol. 14, supplement 1, pp. 67–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Tian, A. Prina-Mello, G. Estrada et al., “A novel assay for the quantification of internalized nanoparticles in macrophages,” Nanotoxicology, vol. 2, no. 4, pp. 232–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. H. Chen, C. C. Chien, C. Petibois et al., “Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy,” Journal of Nanobiotechnology, vol. 9, article 14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Li and A. E. Nel, “Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research,” Journal of Occupational and Environmental Medicine, vol. 53, no. 6, pp. S74–S79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Møller, N. R. Jacobsen, J. K. Folkmann et al., “Role of oxidative damage in toxicity of particulate,” Free Radical Research, vol. 44, no. 1, pp. 1–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Helland, P. Wick, A. Koehler, K. Schmid, and C. Som, “Reviewing the environmental and human health knowledge base of carbon nanotubes,” Environmental Health Perspectives, vol. 115, no. 8, pp. 1125–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Pappi, D. Schiffmann, D. Weiss, V. Castranova, V. Vallyathan, and Q. Rahman, “Human health implications of nanomaterial exposure,” Nanotoxicology, vol. 2, no. 1, pp. 9–27, 2008. View at Google Scholar
  28. A. K. Madl and K. E. Pinkerton, “Health effects of inhaled engineered and incidental nanoparticles Health effects of inhaled nanoparticles,” Critical Reviews in Toxicology, vol. 39, no. 8, pp. 629–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Muller, F. Huaux, A. Fonseca et al., “Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects,” Chemical Research in Toxicology, vol. 21, no. 9, pp. 1698–1705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Wellmann, S. K. Weiland, G. Neiteler, G. Klein, and K. Straif, “Cancer mortality in German carbon black workers 1976-98,” Occupational and Environmental Medicine, vol. 63, no. 8, pp. 513–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Merget, T. Bauer, H. Küpper et al., “Health hazards due to the inhalation of amorphous silica,” Archives of Toxicology, vol. 75, no. 11, pp. 625–634, 2002. View at Google Scholar · View at Scopus
  33. J. M. Antonini, “Health effects of welding,” Critical Reviews in Toxicology, vol. 33, no. 1, pp. 61–103, 2003. View at Google Scholar · View at Scopus
  34. J. C. J. Luo, K. H. Hsu, and W. S. Shen, “Inflammatory responses and oxidative stress from metal fume exposure in automobile welders,” Journal of Occupational and Environmental Medicine, vol. 51, no. 1, pp. 95–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Muller, F. Huaux, N. Moreau et al., “Respiratory toxicity of multi-wall carbon nanotubes,” Toxicology and Applied Pharmacology, vol. 207, no. 3, pp. 221–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Shvedova, E. Kisin, A. R. Murray et al., “Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis,” American Journal of Physiology, vol. 295, no. 4, pp. L552–L565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. A. Shvedova, V. E. Kagan, and B. Fadeel, “Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems,” Annual Review of Pharmacology and Toxicology, vol. 50, pp. 63–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Poma and M. L. Di Giorgio, “Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review,” Current Genomics, vol. 9, no. 8, pp. 571–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Yang, Q. Wang, R. Lei et al., “Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8527–8537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Cui, F. Tian, C. S. Ozkan, M. Wang, and H. Gao, “Effect of single wall carbon nanotubes on human HEK293 cells,” Toxicology Letters, vol. 155, no. 1, pp. 73–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. M. Waters, L. M. Masiello, R. C. Zangar et al., “Macrophage responses to silica nanoparticles are highly conserved across particle sizes,” Toxicological Sciences, vol. 107, no. 2, pp. 553–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Higashisaka, Y. Yoshioka, K. Yamashita et al., “Acute phase proteins as biomarkers for predicting the exposure and toxicity of nanomaterials,” Biomaterials, vol. 32, no. 1, pp. 3–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Erdely, T. Hulderman, R. Salmen et al., “Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers,” Nano Letters, vol. 9, no. 1, pp. 36–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. G. Teeguarden, B. J. Webb-Robertson, K. M. Waters et al., “Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice,” Toxicological Sciences, vol. 120, no. 1, pp. 123–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Lotti, I. Olivato, and L. Bergamo, “Inflammation and short-term cardiopulmonary effects of particulate matter,” Nanotoxicology, vol. 3, no. 1, pp. 27–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Montuschi, “Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications,” Therapeutic Advances in Respiratory Disease, vol. 1, no. 1, pp. 5–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Corradi, P. Gergelova, and A. Mutti, “Use of exhaled breath condensate to investigate occupational lung diseases,” Current Opinion in Allergy and Clinical Immunology, vol. 10, no. 2, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Gube, J. Ebel, P. Brand et al., “Biological effect markers in exhaled breath condensate and biomonitoring in welders: impact of smoking and protection equipment,” International Archives of Occupational and Environmental Health, vol. 83, no. 7, pp. 803–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Poli, P. Carbognani, M. Corradi et al., “Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study,” Respiratory Research, vol. 6, article 71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Corradi, I. Rubinstein, R. Andreoli et al., “Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 10, pp. 1380–1386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Poli, M. Goldoni, M. Corradi et al., “Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS,” Journal of Chromatography B, vol. 878, no. 27, pp. 2643–2651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Corradi, P. Montuschi, L. E. Donnelly, A. Pesci, S. A. Kharitonov, and P. J. Barnes, “Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 4, pp. 854–858, 2001. View at Google Scholar · View at Scopus
  54. R. J. Laumbach and H. M. Kipen, “Acute effects of motor vehicle traffic-related air pollution exposures on measures of oxidative stress in human airways,” Annals of the New York Academy of Sciences, vol. 1203, pp. 107–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. J. Delfino, N. Staimer, T. Tjoa et al., “Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms,” Environmental Health Perspectives, vol. 117, no. 8, pp. 1232–1238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. J. Delfino, N. Staimer, T. Tjoa et al., “Association of biomarkers of systemic inflammation with organic components and source tracers in quasi-ultrafine particles,” Environmental Health Perspectives, vol. 118, no. 6, pp. 756–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Radomski, P. Jurasz, D. Alonso-Escolano et al., “Nanoparticle-induced platelet aggregation and vascular thrombosis,” British Journal of Pharmacology, vol. 146, no. 6, pp. 882–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. E. A. Jun, K. M. Lim, K. Kim et al., “Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity,” Nanotoxicology, vol. 5, no. 2, pp. 157–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Bihari, M. Holzer, M. Praetner et al., “Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation,” Toxicology, vol. 269, no. 2-3, pp. 148–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Kilinç, H. Schulz, G. J. A. J. M. Kuiper et al., “The procoagulant effects of fine particulate matter in vivo,” Particle and Fibre Toxicology, vol. 8, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Li, T. Hulderman, R. Salmen et al., “Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes,” Environmental Health Perspectives, vol. 115, no. 3, pp. 377–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. X. Liu and J. Sun, “Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways,” Biomaterials, vol. 31, no. 32, pp. 8198–8209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. T. R. Nurkiewicz, D. W. Porter, A. F. Hubbs et al., “Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction,” Particle and Fibre Toxicology, vol. 5, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. L. K. Vesterdal, J. K. Folkmann, N. R. Jacobsen et al., “Pulmonary exposure to carbon black nanoparticles and vascular effects,” Particle and Fibre Toxicology, vol. 7, article 33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Loft, P. H. Danielsen, L. Mikkelsen, L. Risom, L. Forchhammer, and P. Møller, “Biomarkers of oxidative damage to DNA and repair,” Biochemical Society Transactions, vol. 36, no. 5, pp. 1071–1076, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. N. L. Mills, K. Donaldson, P. W. Hadoke et al., “Adverse cardiovascular effects of air pollution,” Nature Clinical Practice Cardiovascular Medicine, vol. 6, no. 1, pp. 36–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Møller and S. Loft, “Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1126–1136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. S. Cooke, P. T. Henderson, and M. D. Evans, “Sources of extracellular, oxidatively-modified DNA lesions: implications for their measurement in urine,” Journal of Clinical Biochemistry and Nutrition, vol. 45, no. 3, pp. 255–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. J. J. Sauvain, A. Setyan, P. Wild et al., “Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers,” Journal of Occupational Medicine and Toxicology, vol. 6, no. 1, article 18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: a critical review,” Nanotoxicology, vol. 2, no. 4, pp. 252–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Singh, B. Manshian, G. J. S. Jenkins et al., “NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials,” Biomaterials, vol. 30, no. 23-24, pp. 3891–3914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Ponti, E. Sabbioni, B. Munaro et al., “Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts,” Mutagenesis, vol. 24, no. 5, pp. 439–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. G. C. M. Falck, H. K. Lindberg, S. Suhonen et al., “Genotoxic effects of nanosized and fine TiO2,” Human and Experimental Toxicology, vol. 28, no. 6-7, pp. 339–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Muller, I. Decordier, P. H. Hoet et al., “Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells,” Carcinogenesis, vol. 29, no. 2, pp. 427–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Migliore, D. Saracino, A. Bonelli et al., “Carbon nanotubes induce oxidative DNA damage in RAW264.7 cells,” Environmental and Molecular Mutagenesis, vol. 51, no. 4, pp. 294–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. H. L. Karlsson, “The comet assay in nanotoxicology research,” Analytical and Bioanalytical Chemistry, vol. 398, no. 2, pp. 651–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Valinluck, H. H. Tsai, D. K. Rogstad, A. Burdzy, A. Bird, and L. C. Sowers, “Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2),” Nucleic Acids Research, vol. 32, no. 14, pp. 4100–4108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Fragou, A. Fragou, S. Kouidou, S. Njau, and L. Kovatsi, “Epigenetic mechanisms in metal toxicity,” Toxicology Mechanisms and Methods, vol. 21, no. 4, pp. 343–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Tarantini, M. Bonzini, P. Apostoli et al., “Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation,” Environmental Health Perspectives, vol. 117, no. 2, pp. 217–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. C. T. Ng, S. T. Dheen, W. C. G. Yip, C. N. Ong, B. H. Bay, and L. Y. Lanry Yung, “The induction of epigenetic regulation of PROS1 gene in lung fibroblasts by gold nanoparticles and implications for potential lung injury,” Biomaterials, vol. 32, pp. 7609–7615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. R. S. H. Yang, L. W. Chang, J. P. Wu et al., “Persistent tissue kinetics and redistribution of nanoparticles, quantum Dot 705, in Mice: ICP-MS quantitative assessment,” Environmental Health Perspectives, vol. 115, no. 9, pp. 1339–1343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. T. Yang, W. Guo, Y. Lin et al., “Biodistribution of pristine single-walled carbon nanotubes in vivo,” Journal of Physical Chemistry C, vol. 111, no. 48, pp. 17761–17764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Wang, Y. Liu, F. Jiao et al., “Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles,” Toxicology, vol. 254, no. 1-2, pp. 82–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Elder, R. Gelein, V. Silva et al., “Translocation of inhaled ultrafine manganese oxide particles to the central nervous system,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1172–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Wang, W. Feng, M. Zhu et al., “Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice,” Journal of Nanoparticle Research, vol. 11, no. 1, pp. 41–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Tin-Tin-Win, S. Yamamoto, S. Ahmed, M. Kakeyama, T. Kobayashi, and H. Fujimaki, “Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black,” Toxicology Letters, vol. 163, no. 2, pp. 153–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. L. Hu and J. Q. Gao, “Potential neurotoxicity of nanoparticles,” International Journal of Pharmaceutics, vol. 394, no. 1-2, pp. 115–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Wang, J. Zhao, F. Li, D. Gao, and B. Xing, “Adsorption and inhibition of acetylcholinesterase by different nanoparticles,” Chemosphere, vol. 77, no. 1, pp. 67–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Wang, M. F. Rahman, H. M. Duhart et al., “Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles,” NeuroToxicology, vol. 30, no. 6, pp. 926–933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Wu, C. Wang, J. Sun, and Y. Xue, “Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways,” ACS Nano, vol. 5, no. 6, pp. 4476–4489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Sriram, G. X. Lin, A. M. Jefferson et al., “Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes,” Archives of Toxicology, vol. 84, no. 7, pp. 521–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Manzo, F. Artigas, E. Martínez et al., “Biochemical markers of neurotoxicity. A review of mechanistic studies and applications,” Human and Experimental Toxicology, vol. 15, supplement 1, pp. S20–S35, 1996. View at Google Scholar · View at Scopus
  93. A. Mutti, E. Bergamaschi, R. Alinovi, R. Lucchini, M. V. Vettori, and I. Franchini, “Serum prolactin in subjects occupationally exposed to manganese,” Annals of Clinical and Laboratory Science, vol. 26, no. 1, pp. 10–17, 1996. View at Google Scholar · View at Scopus
  94. M. Simkó and M. O. Mattsson, “Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review,” Particle and Fibre Toxicology, vol. 7, article 42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Hildebrandt, R. Rücker, W. Koenig et al., “Short-term effects of air pollution: a panel study of blood markers in patients with chronic pulmonary disease,” Particle and Fibre Toxicology, vol. 6, pp. 25–40, 2009. View at Google Scholar
  96. M. Nasterlack, A. Zober, and C. Oberlinner, “Considerations on occupational medical surveillance in employees handling nanoparticles,” International Archives of Occupational and Environmental Health, vol. 81, no. 6, pp. 721–726, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. P. A. Schulte, D. Trout, R. D. Zumwalde et al., “Options for occupational health surveillance of workers potentially exposed to engineered nanoparticles: state of the science,” Journal of Occupational and Environmental Medicine, vol. 50, no. 5, pp. 517–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. P. A. Schulte, M. K. Schubauer-Berigan, C. Mayweather, C. L. Geraci, R. Zumwalde, and J. L. McKernan, “Issues in the development of epidemiologic studies of workers exposed to engineered nanoparticles,” Journal of Occupational and Environmental Medicine, vol. 51, no. 3, pp. 323–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Li and A. E. Nel, “Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research,” Journal of Occupational and Environmental Medicine, vol. 53, no. 6, pp. S74–S79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Bergamaschi, G. De Palma, P. Mozzoni et al., “Polymorphism of Quinone-metabolizing enzymes and susceptibility to ozone-reduced acute effects,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 6, pp. 1426–1431, 2001. View at Google Scholar · View at Scopus
  101. F. Alessandrini, I. Weichenmeier, E. van Miert et al., “Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation,” Particle and Fibre Toxicology, vol. 7, article 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. S. H. Liou, M.H. Lin, C. H. Hsu et al., “Pilot study of health hazards among engineered nanoparticles manufacturing workers,” Journal of Occupational and Environonmental Medicine, vol. 60, supplement 1, article A100, 2010. View at Google Scholar
  103. M. Goldoni, A. Caglieri, G. De Palma et al., “Development and set-up of a portable device to monitor airway exhalation and deposition of particulate matter,” Biomarkers, vol. 14, no. 5, pp. 326–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Goldoni, O. Acampa, S. Longo et al., “Inter- and intra-subject variability of kinetics of airway exhalation and deposition of particulate matter in indoor polluted environments,” International Journal of Hygiene and Environmental Health, vol. 215, pp. 312–319, 2012. View at Google Scholar
  105. M. Goldoni, S. Catalani, G. De Palma et al., “Exhaled breath condensate as a suitable matrix to assess lung dose and effects in workers exposed to cobalt and tungsten,” Environmental Health Perspectives, vol. 112, no. 13, pp. 1293–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Goldoni, A. Caglieri, D. Poli et al., “Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers,” Analytica Chimica Acta, vol. 562, no. 2, pp. 229–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. E. Bergamaschi, “Occupational exposure to nanomaterials: present knowledge and future development,” Nanotoxicology, vol. 3, no. 3, pp. 194–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. P. A. Schulte and D. B. Trout, “Nanomaterials and worker health: medical surveillance, exposure registries, and epidemiologic research,” Journal of Occupational and Environmental Medicine, vol. 53, no. 6, pp. S3–S7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. K. Schubauer-Berigan, M. M. Dahm, and M. S. Yencken, “Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics, and feasibility of epidemiologic studies,” Journal of Occupational and Environmental Medicine, vol. 53, no. 6, pp. S62–S67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. O. Boutou-Kempf, J. L. Marchand, A. Radauceanu et al., “Development of a French epidemiological surveillance system of workers producing or handling engineered nanomaterials in the workplace,” Journal of Occupational and Environmental Medicine, vol. 53, no. 6, pp. S103–S107, 2011. View at Publisher · View at Google Scholar · View at Scopus