Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 571015, 9 pages
Research Article

Contrast Enhancement of Optical Coherence Tomography Images Using Branched Gold Nanoparticles

Photonics Division, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Col. Lomas del Campestre, 37150 León, GTO, Mexico

Received 7 August 2012; Revised 29 September 2012; Accepted 12 October 2012

Academic Editor: Shuangxi Xing

Copyright © 2012 Y. Ponce de León et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We propose the use of branched gold nanoparticles (B-GNPs) as a contrast agent for optical coherence tomography (OCT) imaging. Our results show that even when the central source of our OCT (1325 nm) is too far from the maximum peak of the plasmon resonance, branched nanoparticles scatter light very efficiently at this wavelength. B-GNPs were tested as a contrast agent in water and agarose-TiO2 tissue phantoms; the estimated increments in contrast were 9.19 dB and 15.07 dB for branched nanoparticles in water with concentrations of  NPs/mL and  NPs/mL, respectively, while for agarose-TiO2 tissue phantoms the estimated value was 3.17 dB. These results show the promising application of B-GNPs as a contrast agent for tissue imaging using OCT, not only for sources at 1325 nm but also at other central wavelengths located between 800 and 1000 nm.