Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 602398, 5 pages
http://dx.doi.org/10.1155/2012/602398
Research Article

Zinc Oxide Nanoparticle Photodetector

1Center for Micro/Nano Science and Technology and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan
2Department of Electrical Engineering & Institute of Microelectronics, National Cheng Kung University, Tainan 70101, Taiwan
3The Instrument Development Center, National Cheng Kung University, Tainan 701, Taiwan

Received 24 January 2012; Revised 17 May 2012; Accepted 18 May 2012

Academic Editor: Michael Hu

Copyright © 2012 Sheng-Po Chang and Kuan-Jen Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science, vol. 291, no. 5504, pp. 630–633, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nature Materials, vol. 6, no. 11, pp. 841–850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Letters, vol. 4, no. 10, pp. 1975–1979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. V. Radovanovic, C. J. Barrelet, S. Gradečak, F. Qian, and C. M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Letters, vol. 5, no. 7, pp. 1407–1411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, “Materials science: the smallest carbon nanotube,” Nature, vol. 408, no. 6808, p. 50, 2000. View at Google Scholar · View at Scopus
  8. N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, “Materials science: single-walled 4Å carbon nanotube arrays,” Nature, vol. 408, no. 6808, pp. 50–51, 2000. View at Google Scholar · View at Scopus
  9. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947–1949, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Advanced Materials, vol. 17, no. 11, pp. 1372–1377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Mcdonald, G. Konstantatos, S. Zhang et al., “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nature Materials, vol. 4, no. 2, pp. 138–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, vol. 4, no. 6, pp. 435–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. W. K. Hong, J. I. Sohn, D. K. Hwang et al., “Tunable electronic transport characteristics of surface-architecture- controlled ZnO nanowire field effect transistors,” Nano Letters, vol. 8, no. 3, pp. 950–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Baxter and E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Applied Physics Letters, vol. 86, no. 5, Article ID 053114, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto, and S. J. Pachuta, “Properties of the shallow O-related acceptor level in ZnSe,” Journal of Applied Physics, vol. 78, no. 8, pp. 5109–5119, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Homoepitaxial growth of high-quality Zn-Polar ZnO films by plasma-assisted molecular beam epitaxy,” Japanese Journal of Applied Physics, vol. 42, no. 8 B, pp. L1002–L1005, 2003. View at Google Scholar · View at Scopus
  18. K. Keem, J. Kang, C. Yoon et al., “A fabrication technique for top-gate ZnO nanowire field-effect transistors by a photolithography process,” Microelectronic Engineering, vol. 84, no. 5–8, pp. 1622–1626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Y. Weng, S. J. Chang, C. L. Hsu, and T. J. Hsueh, “A zno-nanowire phototransistor prepared on glass substrates,” ACS Applied Materials and Interfaces, vol. 3, no. 2, pp. 162–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, no. 7, pp. 1117–1119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Fortunato, A. Gonçalves, A. Pimentel et al., “Zinc oxide, a multifunctional material: from material to device applications,” Applied Physics A, vol. 96, no. 1, pp. 197–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Materials Today, vol. 9, no. 10, pp. 36–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” Journal of Physical Chemistry B, vol. 110, no. 26, pp. 12865–12873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. L. Hsu, S. J. Chang, Y. R. Lin et al., “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chemical Physics Letters, vol. 416, no. 1–3, pp. 75–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Soci, A. Zhang, B. Xiang et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003–1009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Suehiro, N. Nakagawa, S. I. Hidaka et al., “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology, vol. 17, no. 10, pp. 2567–2573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Martins, E. Fortunato, P. Nunes et al., “Zinc oxide as an ozone sensor,” Journal of Applied Physics, vol. 96, no. 3, pp. 1398–1408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R.-S. Chen, H.-Y. Chen, C.-Y. Lu et al., “Ultrahigh photocurrent gain in m -axial GaN nanowires,” Applied Physics Letters, vol. 91, no. 22, Article ID 223106, 2007. View at Publisher · View at Google Scholar · View at Scopus