Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 612672, 10 pages
Research Article

Properties of Reaction Intermediates from Unzipping Nanotubes via the Diketone Formation: A Computational Study

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Received 13 October 2011; Accepted 18 March 2012

Academic Editor: Sulin Zhang

Copyright © 2012 Takashi Yumura and Toshiyuki Kanemitsu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigated properties of an armchair nanotube attached by specific numbers of diketone groups along the tube axis using density functional theory (DFT) calculations. The results from DFT calculations show that multiple diketone attachments into an armchair nanotube cleave the CC bonds along the tube axis, forming a large hole. Then, the six-membered rings surrounding the hole are planarized, and zigzag edges appear. Due to these geometrical changes, the functionalized armchair nanotubes exhibit properties similar to those in corresponding graphene ribbons with zigzag edges. For example, diketone-attached nanotubes have a spin-polarized ground state with frontier orbitals whose amplitudes are localized at diketone O atoms. As a consequence of the existence of the localized orbitals, unpaired electrons appear only on the diketone O atoms in an armchair nanotube.