Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 645624, 7 pages
http://dx.doi.org/10.1155/2012/645624
Research Article

Nanofibrillation of Dry Chitin Powder by Star Burst System

1Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
2Research Center for Bioscience and Technology, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan

Received 4 January 2012; Revised 9 May 2012; Accepted 23 May 2012

Academic Editor: Tong Lin

Copyright © 2012 Shinsuke Ifuku et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Chitin nanofibers were prepared from dry chitin powder by nanofibrillation using a Star Burst instrument employing a high-pressure water jet system. FE-SEM micrographs showed that the nanofibers became thinner as the number of Star Burst passes increased. Fibrillation in an acidic condition made the chitin fibers thinner than those in a neutral condition. The transmittance spectra of chitin nanofiber/acrylic resin composites led us to the same conclusion. In addition, chitin nanofibers prepared by treatment consisting of five Star Burst passes in the neutral condition were thinner than the previously reported nanofibers. X-ray diffraction profiles showed that the Star Burst system did not damage the chitin nanofibers and did not reduce their crystallinity.