Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 720491, 12 pages
http://dx.doi.org/10.1155/2012/720491
Research Article

Enhanced Visible-Light Photocatalytic Performance of Nanosized Anatase TiO2 Doped with CdS Quantum Dots for Cancer-Cell Treatment

1Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
3Institute of Physics, Lanzhou University, Lanzhou 730107, China

Received 26 April 2012; Accepted 22 June 2012

Academic Editor: Jiaguo Yu

Copyright © 2012 Kangqiang Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  2. J. Xu, Y. Sun, J. Huang et al., “Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation,” Bioelectrochemistry, vol. 71, no. 2, pp. 217–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yu, Q. Xiang, and M. Zhou, “Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures,” Applied Catalysis B, vol. 90, no. 3-4, pp. 595–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Byrne, P. A. Fernandez-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Lv, J. Li, X. Qing, W. Li, and Q. Chen, “Synthesis and photo-degradation application of WO3/TiO2 hollow spheres,” Journal of Hazardous Materials, vol. 189, no. 1-2, pp. 329–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Xiang, J. Yu, and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Mrowetz, W. Balcerski, A. J. Colussi, and M. R. Hoffmann, “Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination,” Journal of Physical Chemistry B, vol. 108, no. 45, pp. 17269–17273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Wang, Y. Guo, B. Liu et al., “Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes,” Ultrasonics Sonochemistry, vol. 18, no. 1, pp. 177–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Wang, B. J. S. Sanderson, and H. Wang, “Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells,” Mutation Research, vol. 628, no. 2, pp. 99–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. S. Lee, S. Yoon, H. J. Yoon et al., “Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells,” Toxicology Letters, vol. 189, no. 3, pp. 191–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Huang, L. Chen, J. Xiong, and M. Liao, “Preparation and characterization of visible-light-activated Fe-N Co-doped TiO2 and its photocatalytic inactivation effect on leukemia tumors,” International Journal of Photoenergy, vol. 2012, Article ID 631435, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Wei, H. Zeng, P. Cui, S. Peng, and T. Cheng, “Various TiO2 microcrystals: controlled synthesis and enhanced photocatalytic activities,” Chemical Engineering Journal, vol. 144, no. 1, pp. 119–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Yu, G. Dai, Q. Xiang, and M. Jaroniec, “Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets,” Journal of Materials Chemistry, vol. 21, no. 4, pp. 1049–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, and Y. Lu, “Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity,” Journal of the American Chemical Society, vol. 129, no. 15, pp. 4538–4539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Iliev, D. Tomova, R. Todorovska et al., “Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution,” Applied Catalysis A, vol. 313, no. 2, pp. 115–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bacsa, J. Kiwi, T. Ohno, P. Albers, and V. Nadtochenko, “Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5994–6003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Rengifo-Herrera and C. Pulgarin, “Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation,” Solar Energy, vol. 84, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Zhou, J. Zhang, B. Cheng, and H. Yu, “Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface plasmon resonance,” International Journal of Photoenergy, vol. 2012, Article ID 532843, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Choi, E. Stathatos, and D. D. Dionysiou, “Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications,” Applied Catalysis B, vol. 63, no. 1-2, pp. 60–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Lv, J. Yu, K. Deng, X. Li, and M. Li, “Effect of phase structures on the formation rate of hydroxyl radicals on the surface of TiO2,” Journal of Physics and Chemistry of Solids, vol. 71, no. 4, pp. 519–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. S. Li, F. L. Jiang, Q. Xiao et al., “Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dots,” Applied Catalysis B, vol. 101, no. 1-2, pp. 118–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Juzenas, W. Chen, Y. P. Sun et al., “Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1600–1614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Yu, J. Zhang, and M. Jaroniec, “Preparation and enhanced visible-light photocatalytic H2- production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution,” Green Chemistry, vol. 12, no. 9, pp. 1611–1614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Maurya and P. Chauhan, “Structural and optical characterization of CdS/TiO2 nanocomposite,” Materials Characterization, vol. 62, no. 4, pp. 382–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Wang, D. Xu, J. Liu, K. Li, and H. Wang, “Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light,” Chemical Engineering Journal, vol. 168, no. 1, pp. 455–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. U. G. Akpan and B. H. Hameed, “The advancements in sol-gel method of doped-TiO2 photocatalysts,” Applied Catalysis A, vol. 375, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Gaponik, D. V. Talapin, A. L. Rogach et al., “Thiol-capping of CDTe nanocrystals: an alternative to organometallic synthetic routes,” Journal of Physical Chemistry B, vol. 106, no. 29, pp. 7177–7185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Xiong, H. Xiao, L. Chen, J. M. Wu, and Z. X. Zhang, “Research on different detection conditions between MTT and CCK-8,” Acta Laser Biology Sinica, vol. 16, no. 5, pp. 526–531, 2007. View at Google Scholar
  30. J. Liqiang, Q. Yichun, W. Baiqi et al., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 90, no. 12, pp. 1773–1787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. X. Zhang, S. J. Zhang, B. Q. Zhang, and M. L. Chen, “Leukemic cells killed by photodynamic therapy with 5-aminolevulinic acid: an experimental study,” Chinese Journal of Laser Medicine & Surgery, vol. 14, no. 4, pp. 249–252, 2005. View at Google Scholar
  32. H. Xiao, J. W. Xiong, J. M. Wu, and Z. X. Zhang, “Research of parameters on ALA-PDT destruction of leukaemie cell,” Acta Laser Biology Sinica, vol. 13, no. 5, pp. 353–357, 2004. View at Google Scholar
  33. N. P. Huang, M. H. Xu, C. W. Yuan, and R. R. Yu, “The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells,” Journal of Photochemistry and Photobiology A, vol. 108, no. 2-3, pp. 229–233, 1997. View at Google Scholar · View at Scopus
  34. J. F. Reeves, S. J. Davies, N. J. F. Dodd, and A. N. Jha, “Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells,” Mutation Research, vol. 640, no. 1-2, pp. 113–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-W. Xiong, L. Chen, M.-S. Liu et al., “Optical manner for estimation viability of cells based on their morphological characteristics,” Journal of Optoelectronics Laser, vol. 16, no. 12, pp. 1514–1519, 2005. View at Google Scholar · View at Scopus
  36. K. Huang, L. Chen, M. Liao, and J. Xiong, “The photocatalytic inactivation effect of Fe-doped TiO2 nanocomposites on leukemic HL60 cells-based photodynamic therapy,” International Journal of Photoenergy, vol. 2012, Article ID 367072, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. M. Sayes, R. Wahi, P. A. Kurian et al., “Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells,” Toxicological Sciences, vol. 92, no. 1, pp. 174–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Zhou, J. Lu, L. Li, and Z. Wang, “Preparation of crystalline Sn-Doped TiO 2 and its application in visible-light photocatalysis,” Journal of Nanomaterials, vol. 2011, Article ID 432947, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. Kang, Q. Z. Lu, S. H. Liu et al., “A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia Coli,” Biomaterials, vol. 31, no. 12, pp. 3317–3326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. A. Elfeky and A.-S. A. Al-Sherbini, “Photo-oxidation of rhodamine-6-G via TiO 2 and Au/TiO 2 -bound polythene beads,” Journal of Nanomaterials, vol. 2011, Article ID 570438, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Castro, A. Jurado, D. Sissa, and S. A. Giraldo, “Performance of Ag-TiO2 photocatalysts towards the photocatalytic disinfection of water under interior-lighting and solar-simulated light irradiations,” International Journal of Photoenergy, vol. 2012, Article ID 261045, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Zhu, B. Yang, J. Xu et al., “Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity,” Applied Catalysis B, vol. 90, no. 3-4, pp. 463–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, and R. Gómez, “CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment,” Journal of Physical Chemistry C, vol. 113, no. 10, pp. 4208–4214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. E. A. Rozhkova, I. Ulasov, B. Lai, N. M. Dimitrijevic, M. S. Lesniak, and T. Rajh, “A High-performance nanobio photocatalyst for targeted brain cancer therapy,” Nano Letters, vol. 9, no. 9, pp. 3337–3342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. H. Suh, K. S. Suslick, G. D. Stucky, and Y. H. Suh, “Nanotechnology, nanotoxicology, and neuroscience,” Progress in Neurobiology, vol. 87, no. 3, pp. 133–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J.-C. Sin, S.-M. Lam, A. R. Mohamed, and K.-T. Lee, “Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review,” International Journal of Photoenergy, vol. 2012, Article ID 185159, 23 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus