Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 749732, 10 pages
http://dx.doi.org/10.1155/2012/749732
Research Article

Star Poly(N-isopropylacrylamide) Tethered to Polyhedral Oligomeric Silsesquioxane (POSS) Nanoparticles by a Combination of ATRP and Click Chemistry

1Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
2Institute of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan

Received 7 January 2012; Accepted 21 February 2012

Academic Editor: Luis Antonio Sanchez de Almeida Prado

Copyright © 2012 Shiao-Wei Kuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. K. Fu, S. W. Kuo, C. F. Huang, F. C. Chang, and H. C. Lin, “Preparation of the stimuli-responsive ZnS/PNIPAM hollow spheres,” Polymer, vol. 50, no. 5, pp. 1246–1250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Huang and F. C. Chang, “Using click chemistry to fabricate ultrathin thermoresponsive microcapsules through direct covalent layer-by-layer assembly,” Macromolecules, vol. 42, no. 14, pp. 5155–5166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. J. Huang and F. C. Chang, “Polypeptide diblock copolymers: syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine,” Macromolecules, vol. 41, no. 19, pp. 7041–7052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ringsdorf, J. Venzmer, and F. M. Winnik, “Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides),” Macromolecules, vol. 24, no. 7, pp. 1678–1686, 1991. View at Google Scholar · View at Scopus
  5. P. Kujawa, F. Tanaka, and F. M. Winnik, “Temperature-dependent properties of telechelic hydrophobically modified poly(N-isopropylacrylamides) in water: evidence from light scattering and fluorescence spectroscopy for the formation of stable mesoglobules at elevated temperatures,” Macromolecules, vol. 39, no. 8, pp. 3048–3055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. F. Huang, H. F. Lee, S. W. Kuo, H. Xu, and F. C. Chang, “Star polymers via atom transfer radical polymerization from adamantane-based cores,” Polymer, vol. 45, no. 7, pp. 2261–2269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. F. Huang, S. W. Kuo, H. C. Lin et al., “Thermal properties, miscibility and specific interactions in comparison of linear and star poly(methyl methacrylate) blend with phenolic,” Polymer, vol. 45, no. 17, pp. 5913–5921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Xia, X. Zhang, and K. Matyjaszewski, “Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an “arm first“ approach,” Macromolecules, vol. 32, no. 13, pp. 4482–4484, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Gao and K. Matyjaszewski, “Synthesis of star polymers by a combination of ATRP and the "click" coupling method,” Macromolecules, vol. 39, no. 15, pp. 4960–4965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhang and A. H. E. Müller, “A "click chemistry" approach to linear and star-shaped telechelic POSS-containing hybrid polymers,” Macromolecules, vol. 43, no. 7, pp. 3148–3152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S.-W. Kuo and F.-C. Chang, “POSS related polymer nanocomposites,” Progress in Polymer Science, vol. 36, no. 12, pp. 1649–1696, 2011. View at Publisher · View at Google Scholar
  12. Q. Pan, X. Chen, X. Fan, Z. Shen, and Q. Zhou, “Organic-inorganic hybrid bent-core liquid crystals with cubic silsesquioxane cores,” Journal of Materials Chemistry, vol. 18, no. 29, pp. 3481–3488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. J. Lee, J. M. Huang, S. W. Kuo, and F. C. Chang, “Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles,” Polymer, vol. 46, no. 23, pp. 10056–10065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. B. H. Yang, H. Y. Xu, Z. Z. Yang, and X. Y. Liu, “Design and architecture of low-dielectric-constant organic-inorganic hybrids from octahydridosilsesquioxanes,” Journal of Materials Chemistry, vol. 19, no. 47, pp. 9038–9044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. L. Liu and M. H. Fangchiang, “Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures,” Journal of Materials Chemistry, vol. 19, no. 22, pp. 3643–3647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. J. Lee, J. M. Huang, S. W. Kuo, J. S. Lu, and F. C. Chang, “Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications,” Polymer, vol. 46, no. 1, pp. 173–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Hirai, M. Leolukman, T. Hayakawa, M. A. Kakimoto, and P. Gopalan, “Hierarchical nanostructures of organosilicate nanosheets within self-organized block copolymer films,” Macromolecules, vol. 41, no. 13, pp. 4558–4560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Lu, J. H. Wang, F. C. Chang, and S. W. Kuo, “Star block copolymers through nitroxide-mediated radical polymerization from polyhedral oligomeric silsesquioxane (POSS) core,” Macromolecular Chemistry and Physics, vol. 211, no. 12, pp. 1339–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Lu, S. W. Kuo, W. T. Chang, and F. C. Chang, “The self-assembled structure of the diblock copolymer PCL-b-P4VP transforms upon competitive interactions with octaphenol polyhedral oligomeric silsesquioxane,” Macromolecular Rapid Communications, vol. 30, no. 24, pp. 2121–2127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. B. Zhang, B. Sun, H. Li et al., “Synthesis of in-chain-functionalized polystyrene-block- poly(dimethylsiloxane) diblock copolymers by anionic polymerization and hydrosilylation using dimethyl-4-(1-phenylvinyl)phenylsilane,” Macromolecules, vol. 42, no. 19, pp. 7258–7262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Ni and S. Zheng, “A novel photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate),” Chemistry of Materials, vol. 16, no. 24, pp. 5141–5148, 2004. View at Google Scholar · View at Scopus
  22. H. M. Lin, S. Y. Wu, P. Y. Huang, C. F. Huang, S. W. Kuo, and F. C. Chang, “Polyhedral oligomeric silsesquioxane containing copolymers for negative-type photoresists,” Macromolecular Rapid Communications, vol. 27, no. 18, pp. 1550–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Xu, S. W. Kuo, J. S. Lee, and F. C. Chang, “Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes,” Macromolecules, vol. 35, no. 23, pp. 8788–8793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Xu, S. W. Kuo, J. S. Lee, and F. C. Chang, “Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes),” Polymer, vol. 43, no. 19, pp. 5117–5124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. C. Sheen, C. H. Lu, C. F. Huang, S. W. Kuo, and F. C. Chang, “Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites,” Polymer, vol. 49, no. 18, pp. 4017–4024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong, and F. C. Chang, “Solid state and solution self-assembly of helical polypeptides tethered to polyhedral oligomeric silsesquioxanes,” Macromolecules, vol. 42, no. 5, pp. 1619–1626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. W. Kuo, Y. C. Wu, C. H. Lu, and F. C. Chang, “Surface modification of gold nanoparticles with polyhedral oligomeric silsesquioxane and incorporation within polymer matrices,” Journal of Polymer Science B, vol. 47, no. 8, pp. 811–819, 2009. View at Google Scholar
  28. K. W. Huang, L. W. Tsai, and S. W. Kuo, “Influence of octakis-functionalized polyhedral oligomeric silsesquioxanes on the physical properties of their polymer nanocomposites,” Polymer, vol. 50, no. 20, pp. 4876–4887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. S. Shih, C. H. Lu, S. W. Kuo, and F. C. Chang, “Hydrogen bond-mediated self-assembly of polyhedral oligomeric silsesquioxane-based supramolecules,” Journal of Physical Chemistry C, vol. 114, no. 30, pp. 12855–12862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-C. Lin and S.-W. Kuo, “Self-assembly and secondary structures of linear polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticles through click chemistry,” Journal of Polymer Science A, vol. 49, no. 10, pp. 2127–2137, 2011. View at Publisher · View at Google Scholar
  31. J. Mu and S. Zheng, “Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels,” Journal of Colloid and Interface Science, vol. 307, no. 2, pp. 377–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Zeng, L. Wang, and S. Zheng, “Rapid deswelling and reswelling response of poly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped polyethylene oxide amphiphilic telechelics,” Journal of Physical Chemistry B, vol. 113, no. 35, pp. 11831–11840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Zeng, Y. Fang, and S. Zheng, “Organic-inorganic hybrid hydrogels involving poly(N-isopropylacrylamide) and polyhedral oligomeric silsesquioxane: preparation and rapid thermoresponsive properties,” Journal of Polymer Science B, vol. 47, no. 5, pp. 504–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Zhang, L. Liu, X. Zhuang, X. Li, J. Bai, and Y. Chen, “Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly(N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization,” Journal of Polymer Science A, vol. 46, no. 21, pp. 7049–7061, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. C. Wu and S. W. Kuo, “Synthesis and characterization of polyhedral oligomeric silsesquioxane (POSS) with multifunctional benzoxazine groups through click chemistry,” Polymer, vol. 51, no. 17, pp. 3948–3955, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. W. Kuo and H. T. Tsai, “Control of peptide secondary structure on star shape polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticle through click chemistry,” Polymer, vol. 51, no. 24, pp. 5695–5704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ciampolini and N. Nardi, “Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris(2-dimethylaminoethyl)amine,” Inorganic Chemistry, vol. 5, no. 1, pp. 41–44, 1966. View at Google Scholar · View at Scopus
  38. C.-T. Lai, R.-H. Chien, S.-W. Kuo, and J.-L. Hong, “Tetraphenylthiophene-functionalized poly(n -isopropylacrylamide): probing lcst with aggregation-induced emission,” Macromolecules, vol. 44, no. 16, pp. 6546–6556, 2011. View at Publisher · View at Google Scholar
  39. W. Zhang and A. H. E. Müller, “Synthesis of tadpole-shaped POSS-containing hybrid polymers via "click chemistry",” Polymer, vol. 51, no. 10, pp. 2133–2139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y.-S. Ye, W.-C. Shen, C.-Y. Tseng et al., “Versatile grafting approaches to star-shaped POSS-containing hybrid polymers using RAFT polymerization and click chemistry,” Chemical Communications, vol. 47, no. 38, pp. 10656–10658, 2011. View at Publisher · View at Google Scholar
  41. J. Zhu, X. Zhu, E. T. Kang, and K. G. Neoh, “Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry,” Polymer, vol. 48, no. 24, pp. 6992–6999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. W. I. Lee, Y. Bae, and A. J. Bard, “Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 27, pp. 8358–8359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Wang and T. Imae, “Fluorescence emission from dendrimers and its pH dependence,” Journal of the American Chemical Society, vol. 126, no. 41, pp. 13204–13205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Onoshima and T. Imae, “Dendritic nano- and microhydrogels fabricated by triethoxysilyl focal dendrons,” Soft Matter, vol. 2, no. 2, pp. 141–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Wang, T. Imae, and M. Miki, “Fluorescence emission from PAMAM and PPI dendrimers,” Journal of Colloid and Interface Science, vol. 306, no. 2, pp. 222–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Yemul and T. Imae, “Synthesis and characterization of poly(ethyleneimine) dendrimers,” Colloid and Polymer Science, vol. 286, no. 6-7, pp. 747–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Tamano and T. Imae, “Investigation of Luminescent poly(propylene imine) dendrimer,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 9, pp. 4329–4334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. C. C. Chu and T. Imae, “Fluorescence investigations of oxygen-doped simple amine compared with fluorescent PAMAM dendrimer,” Macromolecular Rapid Communications, vol. 30, no. 2, pp. 89–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Pastor-Pérez, Y. Chen, Z. Shen, A. Lahoz, and S. E. Stiriba, “Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and pH-effects,” Macromolecular Rapid Communications, vol. 28, no. 13, pp. 1404–1409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. J. Jasmine and E. Prasad, “Fractal growth of PAMAM dendrimer aggregates and its impact on the intrinsic emission properties,” Journal of Physical Chemistry B, vol. 114, no. 23, pp. 7735–7742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Wu, Y. Liu, C. He, and S. H. Goh, “Blue photoluminescence from hyperbranched poly(amino ester)s,” Macromolecules, vol. 38, no. 24, pp. 9906–9909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Lin, J. W. Gao, H. W. Liu, and Y. S. Li, “Synthesis and characterization of hyperbranched poly(ether amide)s with thermoresponsive property and unexpected strong blue photoluminescence,” Macromolecules, vol. 42, no. 9, pp. 3237–3246, 2009. View at Publisher · View at Google Scholar · View at Scopus