Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 789841, 14 pages
Review Article

Microfluidic Platforms for Evaluation of Nanobiomaterials: A Review

1Engineering Research Center, North Carolina A&T State University, Greensboro, NC 27411, USA
2College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA

Received 18 February 2012; Accepted 19 April 2012

Academic Editor: Haifeng Chen

Copyright © 2012 Venkataraman Giridharan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Biomaterials, especially those based on nanomaterials, have emerged as critical tools in biomedical applications. The applications encompass a wide range such as implantable devices, tissue regeneration, drug delivery, diagnostic systems, and molecular printing. The type of materials used also covers a wide range: metals (permanent and degradable), polymers (permanent and degradable), carbon nanotubes, and lipid nanoparticles. This paper explores the use of microfluidic platforms as a high-throughput research tool for the evaluation of nanobiomaterials. Typical screening of such materials involves cell/tissue cultures to determine attributes such as cell adhesion, proliferation, differentiation, as well as biocompatibility. In addition to this, other areas such as drug delivery and toxicity can also be evaluated via microfluidics. Traditional approach for screening of such materials is very time-consuming, and a lot of animals should be sacrificed since it involves one material and a single composition or concentration for a single test. The microfluidics approach has the advantage of using multiple types of drugs and their concentration gradients to simultaneously study the effect on the nanobiomaterial and its interaction with cell/tissue. In addition to this, microfluidics provides a unique environment to study the effect of cell-to-extracellular interaction and cell-to-cell communication in the presence of the nanobiomaterials.