Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 797935, 5 pages
http://dx.doi.org/10.1155/2012/797935
Research Article

Growth and Structure of Pure ZnO Micro/Nanocombs

1Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
2National Center for Nanoscience and Technology, Beijing 100190, China

Received 19 September 2011; Revised 16 December 2011; Accepted 18 December 2011

Academic Editor: Ting Zhu

Copyright © 2012 Tengfei Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Y. Li, X. L. Chen, H. Li, M. He, and Z. Y. Qiao, “Fabrication of zinc oxide nanorods,” Journal of Crystal Growth, vol. 233, no. 1-2, pp. 5–7, 2001. View at Publisher · View at Google Scholar
  3. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947–1949, 2001. View at Publisher · View at Google Scholar
  4. Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced growth of asymmetric nanocantilever arrays on polar surfaces,” Physical Review Letters, vol. 91, no. 18, Article ID 185502, 4 pages, 2003. View at Publisher · View at Google Scholar
  5. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts,” Science, vol. 303, no. 5662, pp. 1348–1351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science, vol. 309, no. 5741, pp. 1700–1704, 2005. View at Publisher · View at Google Scholar
  7. J. Y. Li, H. Peng, J. Liu, and H. O. Everitt, “Facile gram-scale growth of single-crystalline nanotetrapod-assembled ZnO through a rapid process,” European Journal of Inorganic Chemistry, no. 20, pp. 3172–3176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, and P. Yang, “Dendritic nanowire ultraviolet laser array,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4728–4729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. X. Wang, X. W. Sun, A. Wei et al., “Zinc oxide nanocomb biosensor for glucose detection,” Applied Physics Letters, vol. 88, no. 23, Article ID 233106, 2006. View at Publisher · View at Google Scholar
  10. Z. W. Pan, S. M. Mahurin, S. Dai, and D. H. Lowndes, “Nanowire array gratings with ZnO combs,” Nano Letters, vol. 5, no. 4, pp. 723–727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, “Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport,” Journal of Crystal Growth, vol. 270, no. 3-4, pp. 498–504, 2004. View at Publisher · View at Google Scholar
  12. Y. H. Zhang, J. Liu, T. Liu, L. P. You, and X. G. Li, “Supersaturation-controlled synthesis of two types of single-sided ZnO comb-like nanostructures by thermal evaporation at low temperature,” Journal of Crystal Growth, vol. 285, no. 4, pp. 541–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Zhang, X. Song, J. Zheng, H. Liu, X. Li, and L. You, “Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties,” Nanotechnology, vol. 17, no. 8, pp. 1916–1921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Li, C.-X. Xu, G.-P. Zhu et al., “Disc-capped ZnO nanocombs,” Chinese Physics Letters, vol. 24, no. 12, pp. 3495–3498, 2007. View at Publisher · View at Google Scholar
  15. U. Manzoor and D. K. Kim, “Synthesis and enhancement of ultraviolet emission by post-thermal treatment of unique zinc oxide comb-shaped dendritic nanostructures,” Scripta Materialia, vol. 54, no. 5, pp. 807–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. X. Chen, M. Lewis, and W. L. Zhou, “Zno nanostructures fabricated through a double-tube vapor-phase transport synthesis,” Journal of Crystal Growth, vol. 282, no. 1-2, pp. 85–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. S. Lim, J. W. Park, S.-T. Hong, and J. Kim, “Carbothermal synthesis of ZnO nanocomb structure,” Materials Science and Engineering B, vol. 129, no. 1–3, pp. 100–103, 2006. View at Publisher · View at Google Scholar
  18. R. F. Zhuo, H. T. Feng, Q. Liang et al., “Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs,” Journal of Physics D, vol. 41, no. 18, Article ID 185405, 2008. View at Publisher · View at Google Scholar
  19. J. Y. Li, L. S. Wang, D. B. Buchholz, and R. P. H. Chang, “Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires,” Nano Letters, vol. 9, no. 5, pp. 1764–1769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Li, M. Gao, C. Ding et al., “In situ comprehensive characterization of optoelectronic nanomaterials for device purposes,” Nanotechnology, vol. 20, no. 17, Article ID 175703, 2009. View at Publisher · View at Google Scholar
  21. L. E. Greene, M. Law, J. Goldberger et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie, vol. 42, no. 26, pp. 3031–3034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. V. Foreman, J. Li, H. Peng, S. Choi, H. O. Everitt, and J. Liu, “Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders,” Nano Letters, vol. 6, no. 6, pp. 1126–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Y. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, “Diameter-controlled vapor-solid epitaxial growth and properties of aligned ZnO nanowire arrays,” Journal of Physical Chemistry C, vol. 113, no. 10, pp. 3950–3954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, no. 10, pp. 7983–7990, 1996. View at Google Scholar · View at Scopus
  25. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,” Journal of Physical Chemistry B, vol. 104, no. 8, pp. 1715–1723, 2000. View at Google Scholar · View at Scopus