Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 879671, 8 pages
http://dx.doi.org/10.1155/2012/879671
Research Article

Development of a Control Banding Tool for Nanomaterials

1Institute for Work and Health—IST [Institut Universitaire Romand de Santé au Travail], Rue du Bugnon 21, 1011 Lausanne, Switzerland
2Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail—IRSST, Montréal, Canada H3A 3C2
3Institut National de Recherche et de Sécurité—INRS, 30 rue Olivier Noyer, 75680 Paris, France
4Institut Scientifique de Santé Publique, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
5French Agency for Food, Environmental and Occupational Health Safety ANSES, 27-31 Avenue du Général Leclerc, 94701 Maisons-Alfort, France

Received 21 January 2012; Accepted 19 April 2012

Academic Editor: Paul A. Schulte

Copyright © 2012 M. Riediker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. ISO, ISO/TS 27687, Nanotechnologies: terminology and definitions for nano-objects : nanoparticle, nanofibre and nanoplate2008, Geneva, Switzerland, ISO, 2008.
  2. A. D. Maynard, “Nanotechnology: the next big thing, or much ado about nothing?” Annals of Occupational Hygiene, vol. 51, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oberdörster, A. Maynard, K. Donaldson et al., “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Particle and Fibre Toxicology, vol. 2, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ostiguy, B. Roberge, C. Woods et al., Engineered Nanoparticles: Current Knowledge about OHS Risks and Prevention Measures, Studies and Research Projects, IRSST, Montréal, Canada, 2nd edition, 2010.
  5. M. Ricaud and O. Witschger, Nanomaterials: Definitions, Toxicological Risk, Characterisation of Occupational Exposure and Prevention Measures, INRS, Paris, France, 2009.
  6. INRS, Valeurs Limites D'exposition Professionnelle aux Agents Chimiques en France, INRS, Paris, France, 2008, 2ème ed2008.
  7. Québec, Regulation respecting occupational health and safety, Editeur officiel du Québec: [S.l], 2011.
  8. Suva, Grenzwerte am Arbeitsplatz 2011 [Occupational Exposure Limits 2011], Suva, Lucerne, Switzerland, 2011.
  9. ACGIH, TLVs and BEIs Based on the Documentation fo the Threshold Limit Values for Chemical Substances and Physical Angents & Biological Exposure Indices, ACGIH. XVII, Cincinnati, Ohio, USA, 2010.
  10. R. Vincent, F. Bonthoux, G. Mallet et al., “Méthodologie d'évaluation simplifiée du risque chimique: un outil d'aide à la décision,” Hygiène et Sécurité du Travail, vol. 200, pp. 39–62, 2005. View at Google Scholar
  11. A. D. Maynard, R. J. Aitken, T. Butz et al., “Safe handling of nanotechnology,” Nature, vol. 444, no. 7117, pp. 267–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Y. Paik, D. M. Zalk, and P. Swuste, “Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures,” Annals of Occupational Hygiene, vol. 52, no. 6, pp. 419–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. NIOSH, Progress Toward Safe Nanotechnology in the Workplace: A Report from the NIOSH Nanotechnology Research Center, NIOSH, Cincinnati, Ohio, USA, 2007.
  14. B. D. Naumann, E. V. Sargent, B. S. Starkman, W. J. Fraser, G. T. Becker, and G. D. Kirk, “Performance-based exposure control limits for pharmaceutical active ingredients,” American Industrial Hygiene Association Journal, vol. 57, no. 1, pp. 33–42, 1996. View at Google Scholar · View at Scopus
  15. I. M. Brooke, “A UK scheme to help small firms control health risks from chemicals: toxicological considerations,” Annals of Occupational Hygiene, vol. 42, no. 6, pp. 377–390, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. N. I. Garrod, P. G. Evans, and C. W. Davy, “Risk management measures for chemicals: the “COSHH essentials” approach,” Journal of Exposure Science and Environmental Epidemiology, vol. 17, supplement 1, pp. S48–S54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Marquart, H. Heussen, M. Le Feber et al., “‘Stoffenmanager’, a web-based control banding tool using an exposure process model,” Annals of Occupational Hygiene, vol. 52, no. 6, pp. 429–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Russell, S. C. Maidment, I. Brooke, and M. D. Topping, “An introduction to a UK scheme to help small firms control health risks from chemicals,” Annals of Occupational Hygiene, vol. 42, no. 6, pp. 367–376, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. BAuA, “Easy-to-use workplace control scheme for hazardous substances: a practical guide for the application of the German hazardous substance ordinance by small and medium-sized enterprises working with hazardous substances without workplace limit values,” Dortmund, Germany, BAuA, Annexes, 2006.
  20. G. Hunt and M. Riediker, “Building expert consensus on problems of uncertainty and complexity in nanomaterials safety,” Nanotechnology Perceptions, vol. 7, no. 2, pp. 82–98, 2011. View at Google Scholar
  21. D. M Zalk, R. Kamerzell, S. Paik, J. Kapp, D. Harrington, and P. Swuste, “Risk level based management system: a control banding model for occupational health and safety risk management in a highly regulated environment,” Industrial Health, vol. 48, no. 1, pp. 18–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Ostiguy, R. Michael, T. Jerome et al., “Development of a specific control banding tool for nanomaterials: report,” Tech. Rep., Afsset, Maisons-Alfort, France, 2010. View at Google Scholar
  23. BSI, BS OHSAS 18001:2007. Occupational Health and Safety Management Systems—Requirements, BSI, London, UK, 2007.
  24. EC, “Commission Recommendation of 18 October 2011 on the definition of nanomaterial,” Official Journal of the European Union, vol. 275, no. 54, pp. 38–40, 2011. View at Google Scholar
  25. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats,” Journal of Toxicology and Environmental Health A, vol. 65, no. 20, pp. 1531–1543, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. HSE, Control of substances hazardous to health: the control of substances hazardous to health regulations 2002 (as amended): approved code of practice and guidance. 5th ed, Sudbury, UK, HSE Books, 2005.
  27. H. Bouwmeester, I. Lynch, H. J. P. Marvin et al., “Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices,” Nanotoxicology, vol. 5, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Höck, H. Heinrich, H. Karl et al., “Precautionary Matrix for Synthetic Nanomaterials,” Berne, Switzerland, Swiss Federal Office of Public Health and Federal Office for the Environment, 2008.
  29. M. Geiser, B. Rothen-Rutishauser, N. Kapp et al., “Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1555–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. G. Kreyling, M. Semmler, F. Erbe et al., “Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low,” Journal of Toxicology and Environmental Health A, vol. 65, no. 20, pp. 1513–1530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Donaldson and C. L. Tran, “An introduction to the short-term toxicology of respirable industrial fibres,” Mutation Research, vol. 553, no. 1-2, pp. 5–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Donaldson, R. Aitken, L. Tran et al., “Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety,” Toxicological Sciences, vol. 92, no. 1, pp. 5–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Donaldson, F. A. Murphy, R. Duffin, and C. A. Poland, “Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma,” Particle and Fibre Toxicology, vol. 7, article 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. W. Hesterberg, W. C. Miiller, R. Mast, E. E. McConnell, D. M. Bernstein, and R. Anderson, “Relationship between lung biopersistence and biological effects of man-made vitreous fibers after chronic inhalation in rats,” Environmental Health Perspectives, vol. 102, no. 5, pp. 133–137, 1994. View at Google Scholar · View at Scopus
  35. A. B. Kane, “Epidemiology and pathology of asbestos-related diseases,” Reviews in Mineralogy, vol. 28, no. 1, pp. 347–359, 1993. View at Google Scholar
  36. A. Searl, D. Buchanan, R. T. Cullen, A. D. Jones, B. G. Miller, and C. A. Soutar, “Biopersistence and durability of nine mineral fibre types in rat lungs over 12 months,” Annals of Occupational Hygiene, vol. 43, no. 3, pp. 143–153, 1999. View at Google Scholar · View at Scopus
  37. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Takagi, A. Hirose, T. Nishimura et al., “Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube,” Journal of Toxicological Sciences, vol. 33, no. 1, pp. 105–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. WHO/EURO, Reference methods for measuring airborne man-made mineral fibres (MMMF), Environmental health, ed. W.E.T.C.f.M.a.E.A. MMMF, Copenhagen: WHO Regional Office for Europe, VII, 55, 1985.
  40. D. M. Brown, M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson, “Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines,” Toxicology and Applied Pharmacology, vol. 175, no. 3, pp. 191–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Donaldson, X. Y. Li, and W. MacNee, “Ultrafine (nanometre) particle mediated lung injury,” Journal of Aerosol Science, vol. 29, no. 5-6, pp. 553–560, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. Brown, V. Stone, P. Findlay, W. MacNee, and K. Donaldson, “Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components,” Occupational and Environmental Medicine, vol. 57, no. 10, pp. 685–691, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004. View at Google Scholar · View at Scopus
  44. J.-P. Jolivet, C. Froidefond, A. Pottier et al., “Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling,” Journal of Materials Chemistry, vol. 14, no. 21, pp. 3281–3288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J.-J. Sauvain, S. Deslarzes, and M. Riediker, “Nanoparticle reactivity toward dithiothreitol,” Nanotoxicology, vol. 2, no. 3, pp. 121–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. OECD, Water Solubility, TG 105, in OECD Guideline for the Testing of Chemicals. Section 1, Physical-Chemical Properties, OECD, Paris, France, 1995.
  47. J. Chen, M. Tan, A. Nemmar et al., “Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide,” Toxicology, vol. 222, no. 3, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Nemmar, P. H. M. Hoet, and B. Nemery, “Translocation of ultrafine particles,” Environmental Health Perspectives, vol. 114, no. 4, pp. A211–A212, 2006. View at Google Scholar · View at Scopus
  49. G. Oberdörster, Z. Sharp, V. Atudorei et al., “Translocation of inhaled ultrafine particles to the brain,” Inhalation Toxicology, vol. 16, no. 6-7, pp. 437–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Oberdörster, “Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles,” Inhalation Toxicology, vol. 8, supplement, pp. 73–89, 1996. View at Google Scholar · View at Scopus
  51. S. Takenaka, E. Karg, W. Kreyling et al., “Distribution pattern of inhaled ultrafine gold particles in the rat lung,” Inhalation Toxicology, vol. 18, no. 10, pp. 733–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Schleh and J. M. Hohlfeld, “Interaction of nanoparticles with the pulmonary surfactant system,” Inhalation Toxicology, vol. 21, no. 1, pp. 97–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Schleh, C. Mühlfeld, K. Pulskamp et al., “The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure,” Respiratory Research, vol. 10, article 90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Geiser and W. G. Kreyling, “Deposition and biokinetics of inhaled nanoparticles,” Particle and Fibre Toxicology, vol. 7, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Semmler, J. Seitz, F. Erbe et al., “Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs,” Inhalation Toxicology, vol. 16, no. 6-7, pp. 453–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Semmler-Behnke, S. Takenaka, S. Fertsch et al., “Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium,” Environmental Health Perspectives, vol. 115, no. 5, pp. 728–733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. F. Hansen, E. S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, and A. Baun, “Categorization framework to aid exposure assessment of nanomaterials in consumer products,” Ecotoxicology, vol. 17, no. 5, pp. 438–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. BSI, BS EN 15051:2006, Workplace Atmospheres: Measurement of the Dustiness of Bulk Materials: Requirements and Reference Test Methods, BSI, London, UK, 2006.