Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 892506, 6 pages
http://dx.doi.org/10.1155/2012/892506
Research Article

Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

School of Physics and Energy Science, Kyungpook National University, Daegu 702-701, Republic of Korea

Received 27 July 2011; Accepted 23 October 2011

Academic Editor: Laécio Santos Cavalcante

Copyright © 2012 Hyeoung Woo Park and Do-Hyung Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer,” Nano Letters, vol. 7, no. 8, pp. 2196–2200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Tada, H. Higuchi, T. M. Wanatabe, and N. Ohuchi, “In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice,” Cancer Research, vol. 67, no. 3, pp. 1138–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Farrow and P. V. Kamat, “CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 11124–11131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of CdSe quantum crystallites: resonance between interior and surface localized states,” The Journal of Chemical Physics, vol. 96, no. 2, pp. 946–954, 1992. View at Google Scholar · View at Scopus
  5. W. T. Al-Jamal, K. T. Al-Jamal, P. H. Bomans, P. M. Frederik, and K. Kostarelos, “Functionalized-quantum-dot-liposome hybrids as multimodal nanopartides for cancer,” Small, vol. 4, no. 9, pp. 1406–1415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Kim, S. H. Lim, Y. Lee et al., “Conjugation of DNA to streptavidin-coated quantum dots for the real-time imaging of gene transfer into live cells,” in Proceedings of the NSTI Nanotechnology Conference and Trade Show, vol. 3, pp. 379–382, March 2004. View at Scopus
  7. X. Ji, J. Zheng, J. Xu et al., “(CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon,” Journal of Physical Chemistry B, vol. 109, no. 9, pp. 3793–3799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, and H. Weller, “CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals,” Journal of Physical Chemistry B, vol. 108, no. 49, pp. 18826–18831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Pan, Q. Wang, S. Jiang, X. Ji, and L. An, “Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach,” Advanced Materials, vol. 17, no. 2, pp. 176–179, 2005. View at Publisher · View at Google Scholar
  10. G. W. Huang, C. Y. Chen, K. C. Wu, M. O. Ahmed, and P. T. Chou, “One-pot synthesis and characterization of high-quality CdSe/ZnX (X = S, Se) nanocrystals via the CdO precursor,” Journal of Crystal Growth, vol. 265, no. 1-2, pp. 250–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Shen, H. Yuan, J. Z. Niu et al., “Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/CdxZn1 - XS/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen,” Nanotechnology, vol. 22, no. 37, Article ID 375602, 2011. View at Publisher · View at Google Scholar
  12. L. Qu and X. Peng, “Control of photoluminescence properties of CdSe nanocrystals in growth,” Journal of the American Chemical Society, vol. 124, no. 9, pp. 2049–2055, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chemistry of Materials, vol. 15, no. 14, pp. 2854–2860, 2003. View at Publisher · View at Google Scholar
  14. S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto, “Photo-activated luminescence of CdSe quantum dot monolayers,” Journal of Physical Chemistry B, vol. 104, no. 51, pp. 12137–12142, 2000. View at Google Scholar · View at Scopus
  15. N. Myung, Y. Bae, and A. J. Bard, “Enhancement of the photoluminescence of CdSe nanocrystals dispersed in ChCl3 by oxygen passivation of surface states,” Nano Letters, vol. 3, no. 6, pp. 747–749, 2003. View at Google Scholar
  16. X. Zhong, R. Xie, Y. Zhang, T. Basché, and W. Knoll, “High-quality violet- To red-emitting ZnSe/CdSe core/shell nanocrystals,” Chemistry of Materials, vol. 17, no. 16, pp. 4038–4042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Ying, D. Li, S. Guo, S. Dong, and J. Wang, “Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals,” PLOS One, vol. 3, Article ID e2222, 2008. View at Google Scholar
  18. P. Yang, M. Ando, and N. Murase, “Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency,” Journal of Colloid and Interface Science, vol. 316, no. 2, pp. 420–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Advanced Materials, vol. 17, no. 13, pp. 1620–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus