Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 921034, 9 pages
http://dx.doi.org/10.1155/2012/921034
Research Article

Preparation and Characterization of Folate Targeting Magnetic Nanomedicine Loaded with Cisplatin

Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China

Received 24 January 2012; Revised 13 April 2012; Accepted 14 April 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Minqiang Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We used Aldehyde sodium alginate (ASA) as modifier to improve surfactivity and stability of magnetic nanoparticles, and folate acid (FA) as targeting molecule. Fe3O4 nanoparticles were prepared by chemical coprecipitation method. FA was activated and coupled with diaminopolyethylene glycol (NH2-PEG-NH2). ASA was combined with Fe3O4 nanoparticles, and FA-PEG was connected with ASA by Schiff’s base formation. Then Cl- in cisplatin was replaced by hydroxyl group in ASA, and FA- and ASA-modified cisplatin-loaded magnetic nanomedicine (CDDP-FA-ASA-MNPs) was prepared. This nanomedicine was characterized by transmission electron microscopy, dynamic lighterring scattering, phase analysis light scattering and vibrating sample magnetometer. The uptake of magnetic nanomedicine by nasopharyngeal and laryngeal carcinoma cells with folate receptor positive or negative expression were observed by Prussian blue iron stain and transmission electron microscopy. We found that CDDP-FA-ASA-MNPs have good water-solubility and stability. Mean diameter of Fe3O4 core was 8.17 ± 0.24 nm, hydrodynamic diameters was 110.90±1.70 nm, and zeta potential was -26.45±1.26 mV. Maximum saturation magnetization was 22.20 emu/g. CDDP encapsulation efficiency was 49.05±1.58% (mg/mg), and drug loading property was 14.31±0.49% (mg/mg). In vitro, CDDP-FA-ASA-MNPs were selectively taken up by HNE-1 cells and Hep-2 cells, which express folate receptor positively.